MRI Coil Development Strategies for Hybrid MR-PET Systems: A Review

Simultaneously operating MR-PET systems have the potential to provide synergetic multi-parametric information, and, as such, interest surrounding their use and development is increasing. However, despite the potential advantages offered by fully combined MR-PET systems, implementing this hybrid inte...

Full description

Saved in:
Bibliographic Details
Published inIEEE reviews in biomedical engineering Vol. 17; pp. 1 - 10
Main Authors Choi, Chang-Hoon, Felder, Jorg, Lerche, Christoph, Shah, N.J.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Simultaneously operating MR-PET systems have the potential to provide synergetic multi-parametric information, and, as such, interest surrounding their use and development is increasing. However, despite the potential advantages offered by fully combined MR-PET systems, implementing this hybrid integration is technically laborious, and any factors degrading the quality of either modality must be circumvented to ensure optimal performance. In order to attain the best possible quality from both systems, most full MR-PET integrations tend to place the shielded PET system inside the MRI system, close to the target volume of the subject. The radiofrequency (RF) coil used in MRI systems is a key factor in determining the quality of the MR images, and, in simultaneous acquisition, it is generally positioned inside the PET system and PET imaging region, potentially resulting in attenuation and artefacts in the PET images. Therefore, when designing hybrid MR-PET systems, it is imperative that consideration be given to the RF coils inside the PET system. In this review, we present current state-of-the-art RF coil designs used for hybrid MR-PET experiments and discuss various design strategies for constructing PET transparent RF coils.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1937-3333
1941-1189
1941-1189
DOI:10.1109/RBME.2022.3227337