Banishing quasiparticles from Josephson-junction qubits: why and how to do it

Current-biased Josephson junctions are prime candidates for the realization of quantum bits; however, a present limitation is their coherence time. In this paper it is shown qualitatively that quasiparticles create decoherence. We can decrease the number of quasiparticles present in the junctions by...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on applied superconductivity Vol. 13; no. 2; pp. 989 - 993
Main Authors Lang, K.M., Nam, S., Aumentado, J., Urbina, C., Martinis, J.M.
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.06.2003
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Current-biased Josephson junctions are prime candidates for the realization of quantum bits; however, a present limitation is their coherence time. In this paper it is shown qualitatively that quasiparticles create decoherence. We can decrease the number of quasiparticles present in the junctions by two methods - reducing the creation rate with current shunts and increasing the depletion rate with normal-metal traps. Experimental data demonstrate that both methods are required to significantly reduce the number of quasiparticles and increase the system's coherence. We conclude that these methods are effective and that the design of Josephson-junction qubits must consider the role of quasiparticles.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2003.814121