The nuclear SUV3-1 mutation affects a variety of post-transcriptional processes in yeast mitochondria

The SUV3-1 mutation was isolated earlier as a suppressor of a deletion of a conserved RNA processing site (dodecamer) near the 3' end of the var1 gene. Previous studies indicate that the suppressor enhances translation of mutant var1 messages; unexpectedly, it also causes over-accumulation of e...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 18; no. 6; pp. 1369 - 1376
Main Authors CONRAD-WEBB, H, PERLMAN, P. S, HONG ZHU, BUTOW, R. A
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 25.03.1990
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The SUV3-1 mutation was isolated earlier as a suppressor of a deletion of a conserved RNA processing site (dodecamer) near the 3' end of the var1 gene. Previous studies indicate that the suppressor enhances translation of mutant var1 messages; unexpectedly, it also causes over-accumulation of excised intron RNA of the large rRNA gene intron and blocks cleavage at the dodecamer site within that intron. In this study most mitochondrial genes in SUV3-1 and suv3 nuclear contexts are surveyed for changes in levels of mRNA, for interference with dodecamer cleavage and splicing and for levels of excised intron RNAs. SUV3-1 has little or no effect on the size or abundance of unspliced RNAs tested. It results, however, in a marked increase in the abundance of seven of eight excised group I intron RNAs tested, most of which are not detectable in wild-type (suv3) strains. The suppressor lowers levels of the cob and coxl mRNAs about 2-5 and 20-fold, respectively. The effect on coxl mRNA results from a decrease in the splicing of its intron 5 beta. Despite the reduction in these mRNA levels, the amounts of coxl and cyt b polypeptides were close to wild-type levels in SUV3-1 cells. These data show that the suv3 gene plays a prominent role in post-transcriptional and translation events in yeast mitochondria.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/18.6.1369