Development of a dynamic model for the lung lobes and airway tree in the NCAT phantom

The four-dimensional (4-D) NCAT phantom was developed to realistically model human anatomy based on the visible human data and cardiac and respiratory motions based on 4-D tagged magnetic resonance imaging and respiratory-gated CT data from normal human subjects. Currently, the 4-D NCAT phantom does...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on nuclear science Vol. 50; no. 3; pp. 378 - 383
Main Authors Garrity, J.M., Segars, W.P., Knisley, S.B., Tsui, B.M.W.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2003
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The four-dimensional (4-D) NCAT phantom was developed to realistically model human anatomy based on the visible human data and cardiac and respiratory motions based on 4-D tagged magnetic resonance imaging and respiratory-gated CT data from normal human subjects. Currently, the 4-D NCAT phantom does not include the airway tree or its motion within the lungs. Also, each lung is defined with a single surface; the individual lobes are not distinguished. The authors further the development of the phantom by creating dynamic models for the individual lung lobes and for the airway tree in each lobe. NURBS surfaces for the lobes and an initial airway tree model (/spl sim/ 4 generations) were created through manual segmentation of the visible human data. A mathematical algorithm with physiological constraints was used to extend the original airway model to fill each lobe. For each parent airway branch inside a lobe, the algorithm extends the airway tree by creating two daughter branches modeled with cylindrical tubes. Parameters for the cylindrical tubes such as diameter, length, and angle are constrained based on flow parameters and available lung space.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2003.812445