Modeling mRNA Translation With Ribosome Abortions

We derive a deterministic mathematical model for the flow of ribosomes along a mRNA called the ribosome flow model with extended objects and abortions (RFMEOA). This model incorporates important cellular features such as every ribosome covers several codons and they may detach from various regions a...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics Vol. 20; no. 2; pp. 1600 - 1605
Main Authors Jain, Aditi, Gupta, Arvind Kumar
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We derive a deterministic mathematical model for the flow of ribosomes along a mRNA called the ribosome flow model with extended objects and abortions (RFMEOA). This model incorporates important cellular features such as every ribosome covers several codons and they may detach from various regions along the track due to more realistic biological situations including phenomena of ribosome-ribosome collisions. We prove that the ribosome density profile along the mRNA in the RFMEOA and in particular, the protein production rate converge to a unique steady-state. Simulations of the RFMEOA demonstrate a surprising result that an increase in the initiation rate may sometimes lead to a decrease in the production rate. We believe that this model could be helpful to provide insight into the effects of premature termination on the protein expression and be useful for understanding and re-engineering the translation process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1545-5963
1557-9964
DOI:10.1109/TCBB.2022.3203171