Parkin-induced ubiquitination of Mff promotes its association with p62/SQSTM1 during mitochondrial depolarization

The ubiquitin ligase Parkin and autophagic adapter protein p62 are known to function in a common pathway controlling mitochondrial autophagy (mitophagy). However, the evidence supporting that p62 is directly recruited by ubiquitinated proteins remains undetermined. Here, we demonstrate that mitochon...

Full description

Saved in:
Bibliographic Details
Published inActa biochimica et biophysica Sinica Vol. 47; no. 7; pp. 522 - 529
Main Authors Gao, Ju, Qin, Siyue, Jiang, Chang'an
Format Journal Article
LanguageEnglish
Published China 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ubiquitin ligase Parkin and autophagic adapter protein p62 are known to function in a common pathway controlling mitochondrial autophagy (mitophagy). However, the evidence supporting that p62 is directly recruited by ubiquitinated proteins remains undetermined. Here, we demonstrate that mitochondrial fission factor (Mff) associates with Parkin and carbonyl cyanide m-chlorophenyl hydrazone treatment significantly increases the affinity of Parkin with Mff. After recruitment to depo- larized mitochondria, Parkin mediates poly-ubiquitination of Mff at lysine 251. Replacement of lysine 251 by arginine (K251R) totally abrogates Parkin-stimulated ubiquitination of Mff. Subsequently, the ubiquitinated Mff promotes its association with p62. Mff knockout interferes with p62 translocation to damaged mitochondria. Only re-transfection of Mff WT, but not K251R mutant, rescues this pheno- type. Furthermore, loss of Mff results in failure of Parkin translocation and final clearance of damaged mitochondria. Thus, our data reveal functional links among Mff, p62, and the selective autophagy of mitochondria, which are implicated in the pathogenesis of neurodegeneration diseases.
Bibliography:The ubiquitin ligase Parkin and autophagic adapter protein p62 are known to function in a common pathway controlling mitochondrial autophagy (mitophagy). However, the evidence supporting that p62 is directly recruited by ubiquitinated proteins remains undetermined. Here, we demonstrate that mitochondrial fission factor (Mff) associates with Parkin and carbonyl cyanide m-chlorophenyl hydrazone treatment significantly increases the affinity of Parkin with Mff. After recruitment to depo- larized mitochondria, Parkin mediates poly-ubiquitination of Mff at lysine 251. Replacement of lysine 251 by arginine (K251R) totally abrogates Parkin-stimulated ubiquitination of Mff. Subsequently, the ubiquitinated Mff promotes its association with p62. Mff knockout interferes with p62 translocation to damaged mitochondria. Only re-transfection of Mff WT, but not K251R mutant, rescues this pheno- type. Furthermore, loss of Mff results in failure of Parkin translocation and final clearance of damaged mitochondria. Thus, our data reveal functional links among Mff, p62, and the selective autophagy of mitochondria, which are implicated in the pathogenesis of neurodegeneration diseases.
31-1940/Q
Parkin, Mff, p62/SQSTM1, mitophagy, ubiquitination
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1672-9145
1745-7270
DOI:10.1093/abbs/gmv044