The novel antipsychotic aripiprazole is a partial agonist at short and long isoforms of D2 receptors linked to the regulation of adenylyl cyclase activity and prolactin release

Aripiprazole is a novel antipsychotic with a unique mechanism of action, which differs from currently marketed typical and atypical antipsychotics. Aripiprazole has been shown to be a partial agonist at the D(2) family of dopamine (DA) receptors in biochemical and pharmacological studies. To demonst...

Full description

Saved in:
Bibliographic Details
Published inBrain research Vol. 1003; no. 1-2; pp. 9 - 17
Main Authors AIHARA, Koutoku, SHIMADA, Jun, MIWA, Takashi, TOTTORI, Katsura, BURRIS, Kevin D, YOCCA, Frank D, HORIE, Masato, KIKUCHI, Tetsuro
Format Journal Article
LanguageEnglish
Published London Elsevier 02.04.2004
Amsterdam
New York, NY
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Aripiprazole is a novel antipsychotic with a unique mechanism of action, which differs from currently marketed typical and atypical antipsychotics. Aripiprazole has been shown to be a partial agonist at the D(2) family of dopamine (DA) receptors in biochemical and pharmacological studies. To demonstrate aripiprazole's action as a partial D(2) agonist in pituitary cells at the molecular level, we retrovirally transduced the short (D(2S)) and the long (D(2L)) form of the human DA D(2) receptor gene into a rat pituitary cell line, GH4C1. [(3)H]-raclopride saturation binding analyses revealed a B(max) value approximately four-fold higher at D(2S) receptor-expressing GH4C1 cells than at D(2L) receptor-expressing GH4C1 cells, while a K(d) value was similar. Aripiprazole inhibited forskolin-stimulated release of prolactin in both D(2S) and D(2L) receptor-expressing GH4C1 cells, whereas the maximal inhibition of prolactin release was less than that of DA. Similarly, aripiprazole partially inhibited forskolin-induced cAMP accumulation in both D(2) receptor-expressing cells. Aripiprazole antagonized the suppression attained by DA (10(-7) M) in both D(2) receptor-expressing cells and, at the maximal blockade of cAMP, yielded residual cAMP levels equal to those produced by aripiprazole alone. These results indicate that aripiprazole acts as a partial agonist at both D(2S) and D(2L) receptors expressed in GH4C1 cells. These data may explain, at least in part, the observations that aripiprazole shows a novel antipsychotic activity with minimal potential for adverse events including no significant increase of serum prolactin levels in clinical studies.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2003.09.082