Discovering the Type 2 Diabetes in Electronic Health Records Using the Sparse Balanced Support Vector Machine

The diagnosis of type 2 diabetes (T2D) at an early stage has a key role for an adequate T2D integrated management system and patient's follow-up. Recent years have witnessed an increasing amount of available electronic health record (EHR) data and machine learning (ML) techniques have been cons...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 24; no. 1; pp. 235 - 246
Main Authors Bernardini, Michele, Romeo, Luca, Misericordia, Paolo, Frontoni, Emanuele
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The diagnosis of type 2 diabetes (T2D) at an early stage has a key role for an adequate T2D integrated management system and patient's follow-up. Recent years have witnessed an increasing amount of available electronic health record (EHR) data and machine learning (ML) techniques have been considerably evolving. However, managing and modeling this amount of information may lead to several challenges, such as overfitting, model interpretability, and computational cost. Starting from these motivations, we introduced an ML method called sparse balanced support vector machine (SB-SVM) for discovering T2D in a novel collected EHR dataset (named Federazione Italiana Medici di Medicina Generale dataset). In particular, among all the EHR features related to exemptions, examination, and drug prescriptions, we have selected only those collected before T2D diagnosis from an uniform age group of subjects. We demonstrated the reliability of the introduced approach with respect to other ML and deep learning approaches widely employed in the state-of-the-art for solving this task. Results evidence that the SB-SVM overcomes the other state-of-the-art competitors providing the best compromise between predictive performance and computation time. Additionally, the induced sparsity allows to increase the model interpretability, while implicitly managing high-dimensional data and the usual unbalanced class distribution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2019.2899218