A New Force Myography-Based Approach for Continuous Estimation of Knee Joint Angle in Lower Limb Amputees and Able-Bodied Subjects

In this paper, we present a new method for estimating knee joint angle using force myography. The technique utilized force myogram signals from thigh muscles while subjects walked on a treadmill at different speeds, i.e., slow, medium, fast, and run. An eight-channel in-house force myography (FMG) d...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 25; no. 3; pp. 701 - 710
Main Authors Kumar, Amit, Godiyal, Anoop Kant, Joshi, Pradeep, Joshi, Deepak
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we present a new method for estimating knee joint angle using force myography. The technique utilized force myogram signals from thigh muscles while subjects walked on a treadmill at different speeds, i.e., slow, medium, fast, and run. An eight-channel in-house force myography (FMG) data acquisition system was developed to collect the data wirelessly from seven healthy subjects and a transfemoral amputee. An artificial neural network was employed to estimate the knee joint angle from force myogram signals. The root-mean-square error across the healthy subjects was 6.9±1.5° at slow (1.5 km/hr), 6.5±1.3° at medium (4 km/hr), 7.4±2.2° at fast (6 km/hr) speeds, and 8.1±2.2° while running (8 km/hr). The root-mean-square error, across the trials, for the transfemoral amputee was 4.0±1.2° at slow (1 km/hr), 3.2±0.6° at medium (2 km/hr) and 3.8±0.9° at fast (3 km/hr) speeds. The proposed approach is useful in real-time gait analysis. The system is easily wearable, convenient in out-door use, portable, and commercially viable.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2020.2993697