Neural Networks-Based Adaptive Finite-Time Fault-Tolerant Control for a Class of Strict-Feedback Switched Nonlinear Systems

This paper concentrates upon the problem of finite-time fault-tolerant control for a class of switched nonlinear systems in lower-triangular form under arbitrary switching signals. Both loss of effectiveness and bias fault in actuator are taken into account. The method developed extends the traditio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 49; no. 7; pp. 2536 - 2545
Main Authors Liu, Lei, Liu, Yan-Jun, Tong, Shaocheng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper concentrates upon the problem of finite-time fault-tolerant control for a class of switched nonlinear systems in lower-triangular form under arbitrary switching signals. Both loss of effectiveness and bias fault in actuator are taken into account. The method developed extends the traditional finite-time convergence from nonswitched lower-triangular nonlinear systems to switched version by designing appropriate controller and adaptive laws. In contrast to the previous results, it is the first time to handle the fault tolerant problem for switched system while the finite-time stability is also necessary. Meanwhile, there exist unknown internal dynamics in the switched system, which are identified by the radial basis function neural networks. It is proved that under the presented control strategy, the system output tracks the reference signal in the sense of finite-time stability. Finally, an illustrative simulation on a resistor-capacitor-inductor circuit is proposed to further demonstrate the effectiveness of the theoretical result.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2018.2828308