Fuzzy Broad Learning System: A Novel Neuro-Fuzzy Model for Regression and Classification
A novel neuro-fuzzy model named fuzzy broad learning system (BLS) is proposed by merging the Takagi-Sugeno (TS) fuzzy system into BLS. The fuzzy BLS replaces the feature nodes of BLS with a group of TS fuzzy subsystems, and the input data are processed by each of them. Instead of aggregating the out...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 50; no. 2; pp. 414 - 424 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2018.2857815 |
Cover
Loading…
Summary: | A novel neuro-fuzzy model named fuzzy broad learning system (BLS) is proposed by merging the Takagi-Sugeno (TS) fuzzy system into BLS. The fuzzy BLS replaces the feature nodes of BLS with a group of TS fuzzy subsystems, and the input data are processed by each of them. Instead of aggregating the outputs of fuzzy rules produced by every fuzzy subsystem into one value immediately, all of them are sent to the enhancement layer for further nonlinear transformation to preserve the characteristic of inputs. The defuzzification outputs of all fuzzy subsystem and the outputs of enhancement layer are combined together to obtain the model output. The k-means method is employed to determine the centers of Gaussian membership functions in antecedent part and the number of fuzzy rules. The parameters that need to be calculated in a fuzzy BLS are the weights connecting the outputs of enhancement layer to model output and the randomly initialized coefficients of polynomials in consequent part in fuzzy subsystems, which can be calculated analytically. Therefore, fuzzy BLS retains the fast computational nature of BLS. The proposed fuzzy BLS is evaluated by some popular benchmarks for regression and classification, and compared with some state-of-the-art nonfuzzy and neuro-fuzzy approaches. The results indicate that fuzzy BLS outperforms other models involved. Moreover, fuzzy BLS shows advantages over neurofuzzy models regarding to the number of fuzzy rules and training time, which can ease the problem of rule explosion to some extent. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2267 2168-2275 2168-2275 |
DOI: | 10.1109/TCYB.2018.2857815 |