Non-Contact Heartbeat Detection Based on Ballistocardiogram Using UNet and Bidirectional Long Short-Term Memory

Benefiting from non-invasive sensing tech- nologies, heartbeat detection from ballistocardiogram (BCG) signals is of great significance for home-care applications, such as risk prediction of cardiovascular disease (CVD) and sleep staging, etc. In this paper, we propose an effective deep learning mod...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 26; no. 8; pp. 3720 - 3730
Main Authors Mai, Yaozong, Chen, Zizhao, Yu, Baoxian, Li, Ye, Pang, Zhiqiang, Han, Zhang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Benefiting from non-invasive sensing tech- nologies, heartbeat detection from ballistocardiogram (BCG) signals is of great significance for home-care applications, such as risk prediction of cardiovascular disease (CVD) and sleep staging, etc. In this paper, we propose an effective deep learning model for automatic heartbeat detection from BCG signals based on UNet and bidirectional long short-term memory (Bi-LSTM). The developed deep learning model provides an effective solution to the existing challenges in BCG-aided heartbeat detection, especially for BCG in low signal-to-noise ratio, in which the waveforms in BCG signals are irregular due to measured postures, rhythm and artifact motion. For validations, performance of the proposed detection is evaluated by BCG recordings from 43 subjects with different measured postures and heart rate ranges. The accuracy of the detected heartbeat intervals measured in different postures and signal qualities, in comparison with the R-R interval of ECG, is promising in terms of mean absolute error and mean relative error, respectively, which is superior to the state-of-the-art methods. Numerical results demonstrate that the proposed UNet-BiLSTM model performs robust to noise and perturbations (e.g. respiratory effort and artifact motion) in BCG signals, and provides a reliable solution to long term heart rate monitoring.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2022.3162396