Error Correction Regression Framework for Enhancing the Decoding Accuracies of Ear-EEG Brain-Computer Interfaces

Ear-electroencephalography (EEG) is a promising tool for practical brain-computer interface (BCI) applications because it is more unobtrusive, comfortable, and mobile than a typical scalp-EEG system. However, an ear-EEG has a natural constraint of electrode location (e.g., limited in or around the e...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 50; no. 8; pp. 3654 - 3667
Main Authors Kwak, No-Sang, Lee, Seong-Whan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ear-electroencephalography (EEG) is a promising tool for practical brain-computer interface (BCI) applications because it is more unobtrusive, comfortable, and mobile than a typical scalp-EEG system. However, an ear-EEG has a natural constraint of electrode location (e.g., limited in or around the ear) for acquiring informative brain signals sufficiently. Achieving reliable performance of ear-EEG in specific BCI paradigms that do not utilize brain signals on the temporal lobe around the ear is difficult. For example, steady-state visual evoked potentials (SSVEPs), which are mainly generated in the occipital area, have a significantly attenuated and distorted amplitude in ear-EEG. Therefore, preserving the high level of decoding accuracy is challenging and essential for SSVEP BCI based on ear-EEG. In this paper, we first investigate linear and nonlinear regression methods to increase the decoding accuracy of ear-EEG regarding SSVEP paradigm by utilizing the estimated target EEG signals on the occipital area. Then, we investigate an ensemble method to consider the prediction variability of the regression methods. Finally, we propose an error correction regression (ECR) framework to reduce the prediction errors by adding an additional nonlinear regression process (i.e., kernel ridge regression). We evaluate the ECR framework in terms of single session, session-to-session transfer, and subject-transfer decoding. We also validate the online decoding ability of the proposed framework with a short-time window size. The average accuracies are observed to be 91.11±9.14%, 90.52±8.67%, 86.96±12.13%, and 78.79±12.59%. This paper demonstrates that SSVEP BCI based on ear-EEG can achieve reliable performance with the proposed ECR framework.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2019.2924237