Pyrolysis Mechanism of Hemicellulose Monosaccharides in Different Catalytic Processes
The pyrolysis behaviors of four different hemicellulose monosaccharides, namely, two pentoses(xylose and arabinose) and two hexoses(mannose and galactose) catalyzed by HZSM-5 were investigated. The effects of two different processes by which the catalyst comes into contact with the substrate, namely...
Saved in:
Published in | Chemical research in Chinese universities Vol. 30; no. 5; pp. 848 - 854 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Changchun
Jilin University and The Editorial Department of Chemical Research in Chinese Universities
01.10.2014
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R.China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The pyrolysis behaviors of four different hemicellulose monosaccharides, namely, two pentoses(xylose and arabinose) and two hexoses(mannose and galactose) catalyzed by HZSM-5 were investigated. The effects of two different processes by which the catalyst comes into contact with the substrate, namely, mixed with monosaccha- ride(in-bed) or layered above monosaccharide(in situ), were compared. Evolution characteristics of typical pyrolytic products(H20, CO2, acids, furans and aromatics) were achieved by thermogravimetry-Fourier transform infrared spectroscopy. The in-bed catalytic process significantly lowered the pyrolytic temperature and increased the produc- tion of furans and acids at a low temperature by enhancing dehydration, retro-aldol fragmentation and Grob fragmen- tation. During the in situ catalytic process, volatiles generated from monosaccharides passed through a catalyst bed and underwent further dehydration, decarboxylation, and decarbonylation, significantly lowering the yields of acids and furans. The yield of aromatics was enhanced, and the corresponding volatilization temperature was lowered, es- pecially under the in-bed catalytic conditions. Pentoses entered into the zeolite pores more easily than hexoses did because of their smaller molecular size; thus, the in-bed catalytic process drastically affected pentose pyrolysis. |
---|---|
AbstractList | The pyrolysis behaviors of four different hemicellulose monosaccharides, namely, two pentoses(xylose and arabinose) and two hexoses(mannose and galactose) catalyzed by HZSM-5 were investigated. The effects of two different processes by which the catalyst comes into contact with the substrate, namely, mixed with monosaccha- ride(in-bed) or layered above monosaccharide(in situ), were compared. Evolution characteristics of typical pyrolytic products(H20, CO2, acids, furans and aromatics) were achieved by thermogravimetry-Fourier transform infrared spectroscopy. The in-bed catalytic process significantly lowered the pyrolytic temperature and increased the produc- tion of furans and acids at a low temperature by enhancing dehydration, retro-aldol fragmentation and Grob fragmen- tation. During the in situ catalytic process, volatiles generated from monosaccharides passed through a catalyst bed and underwent further dehydration, decarboxylation, and decarbonylation, significantly lowering the yields of acids and furans. The yield of aromatics was enhanced, and the corresponding volatilization temperature was lowered, es- pecially under the in-bed catalytic conditions. Pentoses entered into the zeolite pores more easily than hexoses did because of their smaller molecular size; thus, the in-bed catalytic process drastically affected pentose pyrolysis. The pyrolysis behaviors of four different hemicellulose monosaccharides, namely, two pentoses(xylose and arabinose) and two hexoses(mannose and galactose) catalyzed by HZSM-5 were investigated. The effects of two different processes by which the catalyst comes into contact with the substrate, namely, mixed with monosaccharide( in-bed) or layered above monosaccharide( in situ ), were compared. Evolution characteristics of typical pyrolytic products(H 2 O, CO 2 , acids, furans and aromatics) were achieved by thermogravimetry-Fourier transform infrared spectroscopy. The in-bed catalytic process significantly lowered the pyrolytic temperature and increased the production of furans and acids at a low temperature by enhancing dehydration, retro-aldol fragmentation and Grob fragmentation. During the in situ catalytic process, volatiles generated from monosaccharides passed through a catalyst bed and underwent further dehydration, decarboxylation, and decarbonylation, significantly lowering the yields of acids and furans. The yield of aromatics was enhanced, and the corresponding volatilization temperature was lowered, especially under the in-bed catalytic conditions. Pentoses entered into the zeolite pores more easily than hexoses did because of their smaller molecular size; thus, the in-bed catalytic process drastically affected pentose pyrolysis. |
Author | WANG Shurong RU Bin LIN Haizhou SUN Wuxing YU Chunjiang LUO Zhongyang |
AuthorAffiliation | State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China |
AuthorAffiliation_xml | – name: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R.China |
Author_xml | – sequence: 1 givenname: Shurong surname: Wang fullname: Wang, Shurong organization: State Key Laboratory of Clean Energy Utilization, Zhejiang University – sequence: 2 givenname: Bin surname: Ru fullname: Ru, Bin organization: State Key Laboratory of Clean Energy Utilization, Zhejiang University – sequence: 3 givenname: Haizhou surname: Lin fullname: Lin, Haizhou organization: State Key Laboratory of Clean Energy Utilization, Zhejiang University – sequence: 4 givenname: Wuxing surname: Sun fullname: Sun, Wuxing organization: State Key Laboratory of Clean Energy Utilization, Zhejiang University – sequence: 5 givenname: Chunjiang surname: Yu fullname: Yu, Chunjiang email: chunjiang@zju.edu.cn organization: State Key Laboratory of Clean Energy Utilization, Zhejiang University – sequence: 6 givenname: Zhongyang surname: Luo fullname: Luo, Zhongyang organization: State Key Laboratory of Clean Energy Utilization, Zhejiang University |
BookMark | eNp9kD1PwzAQhi1UJFrgB7BFbAyB80fiZETlo0hUMMBsOc6ldZXaYKei-fekKgKJodMN9z73np4JGTnvkJALCtcUQN5EAUywFKhIBdAyLY_ImDEKKaeSjsh4CGVpCQJOyCTGFQAv81yMyftrH3zbRxuTOZqldjauE98kM1xbg227aX3EZO6dj9oM-2BrjIl1yZ1tGgzoumSqO932nTXJa_AGY8R4Ro4b3UY8_5mn5O3h_m06S59fHp-mt8-p4aLsUqGx4FhVVKIGmhVGGOC0yAyXtdBFnhuqs6KWHEVVGMCCMtlUIHSFsqxLfkqu9me_tGu0W6iV3wQ3FKpFvd0ut_2KDUIgAyaHrNxnTfAxBmyUsZ3urHdd0LZVFNROpNqLVAOndiLVroX-Iz-CXevQH2TYnolD1i0w_L12CLr8KVp6t_gcuN-mPGc5F1kh-DesWpQJ |
CitedBy_id | crossref_primary_10_1007_s40242_019_9024_6 crossref_primary_10_1016_j_biortech_2015_04_098 crossref_primary_10_1016_j_fuel_2020_117302 crossref_primary_10_1016_j_fuel_2019_02_059 crossref_primary_10_1016_j_chemosphere_2021_131824 crossref_primary_10_1016_j_combustflame_2020_04_022 crossref_primary_10_1007_s40242_016_6091_9 crossref_primary_10_1021_acs_energyfuels_0c02295 crossref_primary_10_1007_s10973_017_6585_9 crossref_primary_10_1016_j_enconman_2024_118437 crossref_primary_10_1007_s40242_015_5263_3 crossref_primary_10_1016_j_biortech_2018_01_134 crossref_primary_10_1016_j_rser_2021_111454 crossref_primary_10_1002_vjch_202000025 crossref_primary_10_1016_j_pecs_2017_05_004 crossref_primary_10_1016_j_fuel_2023_129922 crossref_primary_10_1016_j_combustflame_2019_04_052 crossref_primary_10_1002_ente_201600327 crossref_primary_10_1016_j_fuproc_2015_07_005 crossref_primary_10_1016_j_wasman_2020_09_022 crossref_primary_10_1016_j_jechem_2019_01_024 crossref_primary_10_1016_j_jaap_2022_105589 crossref_primary_10_1016_j_cej_2017_07_089 |
Cites_doi | 10.1016/S0165-2370(99)00005-4 10.1021/ef101619e 10.1016/S0734-9750(00)00044-6 10.1016/j.jcat.2009.12.013 10.1021/cr300182k 10.1023/A:1024557011975 10.1016/j.apcatb.2010.01.015 10.1021/cr050989d 10.1016/j.biortech.2011.10.078 10.1021/ie030792g 10.1039/C004518G 10.1016/j.cattod.2010.12.049 10.1039/c2ee22784c 10.1016/S0016-2361(01)00061-8 10.1039/C3GC41288A 10.1021/jp025577c 10.1016/j.biortech.2013.07.068 10.1002/anie.200801476 10.1016/j.fuel.2006.12.013 10.1002/cssc.200800018 10.1016/0008-6215(91)84093-T 10.1016/S1005-9040(06)60155-4 10.1016/j.jaap.2011.06.001 10.1007/s40242-013-2447-6 10.1016/S0960-8524(99)00161-3 10.1021/ef0502397 10.1016/j.jaap.2008.03.007 10.1016/j.cattod.2011.02.005 10.1016/j.jcat.2011.01.019 10.1016/j.biortech.2013.06.026 10.1021/ef034067u |
ContentType | Journal Article |
Copyright | Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2014 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2014 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s40242-014-4019-9 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Pyrolysis Mechanism of Hemicellulose Monosaccharides in Different Catalytic Processes |
EISSN | 2210-3171 |
EndPage | 854 |
ExternalDocumentID | gdxxhxyj201405027 10_1007_s40242_014_4019_9 662634584 |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China; the National Basic Research Program of China; the Program for New Century Excellent Talents in University,China; the Zhejiang Provincial Natural Science Foundation of China funderid: (51276166); (2013CB228101); (NCET-10-0741); (R1110089) |
GroupedDBID | --K -EM 06D 0R~ 188 1B1 29B 2B. 2C. 2RA 30V 4.4 406 5GY 5VR 92E 92I 92L 92Q 93N 96X AAAVM AAEDT AAFGU AAHNG AAIAL AAJKR AALRI AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAXUO AAYFA AAYIU AAYQN AAYTO AAZMS ABDZT ABECU ABFGW ABFTV ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBMV ACBRV ACBYP ACCUX ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMLO ACOKC ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADMDM ADOXG ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKLTO AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AXYYD BGNMA CCEZO CDRFL CHBEP CQIGP CS3 CW9 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EO9 ESBYG FA0 FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR J-C JBSCW JZLTJ KOV LLZTM M41 M4Y NPVJJ NQJWS NU0 O9- O9J P2P PT4 RLLFE ROL RSV SCL SDC SDG SHX SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE TCJ TGP TSG UG4 UOJIU UTJUX UZ4 UZXMN VFIZW W48 Z7V ZMTXR ~WA -SB -S~ 5XA 5XC AACDK AAJBT AASML AAXDM ABAKF ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CAJEB Q-- SJYHP U1G U5L UY8 AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 4A8 PSX |
ID | FETCH-LOGICAL-c349t-4ae83ebb17ea0158c4c03185c37d4a866c1a58d73e4b8c0e8127fb04abe79d93 |
IEDL.DBID | AGYKE |
ISSN | 1005-9040 |
IngestDate | Thu May 29 04:06:50 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 Tue Jul 01 04:20:51 EDT 2025 Fri Feb 21 02:26:38 EST 2025 Wed Feb 14 10:33:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Pyrolysis Hemicellulose Monosaccharide HZSM-5 TG-FTIR |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-4ae83ebb17ea0158c4c03185c37d4a866c1a58d73e4b8c0e8127fb04abe79d93 |
Notes | The pyrolysis behaviors of four different hemicellulose monosaccharides, namely, two pentoses(xylose and arabinose) and two hexoses(mannose and galactose) catalyzed by HZSM-5 were investigated. The effects of two different processes by which the catalyst comes into contact with the substrate, namely, mixed with monosaccha- ride(in-bed) or layered above monosaccharide(in situ), were compared. Evolution characteristics of typical pyrolytic products(H20, CO2, acids, furans and aromatics) were achieved by thermogravimetry-Fourier transform infrared spectroscopy. The in-bed catalytic process significantly lowered the pyrolytic temperature and increased the produc- tion of furans and acids at a low temperature by enhancing dehydration, retro-aldol fragmentation and Grob fragmen- tation. During the in situ catalytic process, volatiles generated from monosaccharides passed through a catalyst bed and underwent further dehydration, decarboxylation, and decarbonylation, significantly lowering the yields of acids and furans. The yield of aromatics was enhanced, and the corresponding volatilization temperature was lowered, es- pecially under the in-bed catalytic conditions. Pentoses entered into the zeolite pores more easily than hexoses did because of their smaller molecular size; thus, the in-bed catalytic process drastically affected pentose pyrolysis. Hemicellulose; Monosaccharide; TG-FTIR; HZSM-5; Pyrolysis 22-1183/06 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_gdxxhxyj201405027 crossref_citationtrail_10_1007_s40242_014_4019_9 crossref_primary_10_1007_s40242_014_4019_9 springer_journals_10_1007_s40242_014_4019_9 chongqing_primary_662634584 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-01 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Changchun |
PublicationPlace_xml | – name: Changchun |
PublicationTitle | Chemical research in Chinese universities |
PublicationTitleAbbrev | Chem. Res. Chin. Univ |
PublicationTitleAlternate | Chemical Research in Chinese University |
PublicationTitle_FL | Chemical Research in Chinese Universities |
PublicationYear | 2014 |
Publisher | Jilin University and The Editorial Department of Chemical Research in Chinese Universities State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R.China |
Publisher_xml | – name: Jilin University and The Editorial Department of Chemical Research in Chinese Universities – name: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R.China |
References | van PuttenR Jvan der WaalJ Cde JongERasrendraC BHeeresH Jde VriesJ GChem. Rev.2013113149910.1021/cr300182k1:CAS:528:DC%2BC3sXit1Ght7g%3D StöckerMAngew. Chem. Int. Ed.200847920010.1002/anie.200801476 WangS RGuoX JLiangTZhouYLuoZ YBioresource Technol.201210472210.1016/j.biortech.2011.10.0781:CAS:528:DC%2BC3MXhs1Olsb%2FL CarlsonT RJaeJLinY CTompsettG AHuberG WJ. Catal.201027011010.1016/j.jcat.2009.12.0131:CAS:528:DC%2BC3cXit1Ontbo%3D MihalcikD JMullenC ABoatengA AJ. Anal. Appl. Pyrol.20119222410.1016/j.jaap.2011.06.0011:CAS:528:DC%2BC3MXhtVaksb7K WangK GKimK HBrownR CGreen Chem.20141672710.1039/C3GC41288A1:CAS:528:DC%2BC2cXhtlaht7c%3D GulerL PYuY QKenttämaaH IJ. Phys. Chem. A2002106675410.1021/jp025577c1:CAS:528:DC%2BD38XkvVWgs7Y%3D CzernikSBridgwaterAEnerg. Fuel20041859010.1021/ef034067u1:CAS:528:DC%2BD2cXhsFentbY%3D CarlsonT RVisputeT PHuberG WChemSusChem2008139710.1002/cssc.2008000181:CAS:528:DC%2BD1cXntlSqu7s%3D YangH PYanRChenH PLeeD HZhengC GFuel200786178110.1016/j.fuel.2006.12.0131:CAS:528:DC%2BD2sXlslWmtLY%3D RäisänenUPitkänenIHalttunenHHurttaMJ. Therm. Anal. Calorim.20037248110.1023/A:1024557011975 BassilakisRCarangeloRWojtowiczMFuel200180176510.1016/S0016-2361(01)00061-81:CAS:528:DC%2BD3MXmvVegt7g%3D LiuQWangS RZhengYLuoZ YCenK FJ. Anal. Appl. Pyrol.20088217010.1016/j.jaap.2008.03.0071:CAS:528:DC%2BD1cXlvVOhtbY%3D BridgwaterAVJ. Anal. Appl. Pyrol.199951310.1016/S0165-2370(99)00005-41:CAS:528:DyaK1MXjt1ais7g%3D ParkH JHeoH SJeonJ KKimJRyooRJeongK EParkY KAppl. Catal. B: Environ.20109536510.1016/j.apcatb.2010.01.0151:CAS:528:DC%2BC3cXjt1ansrg%3D PonderG RRichardsG NCarbohyd. Res.199121814310.1016/0008-6215(91)84093-T1:CAS:528:DyaK38XlvFyisw%3D%3D WangS RLiangTRuBGuoX JChem. Res. Chinese Universities201329478210.1007/s40242-013-2447-61:CAS:528:DC%2BC3sXhs1ektr7F GayuboA GAguayoA TAtutxaAAguadoROlazarMBilbaoJInd. Eng. Chem. Res.200443261910.1021/ie030792g1:CAS:528:DC%2BD2cXjsFKru7Y%3D CormaAIborraSVeltyAChem. Rev.2007107241110.1021/cr050989d1:CAS:528:DC%2BD2sXlvVelsbw%3D BulushevD ARossJ RCatal. Today2011171110.1016/j.cattod.2011.02.0051:CAS:528:DC%2BC3MXps1ehsLk%3D ZhaoYPanTZuoYGuoQ XFuYBioresource Technol.20131473710.1016/j.biortech.2013.07.0681:CAS:528:DC%2BC3sXhsFWmsbnJ TaarningEOsmundsenC MYangXVossBAndersenS IChristensenC HEnerg. Environ. Sci.2011479310.1039/C004518G1:CAS:528:DC%2BC3MXjvFaitbY%3D WangS RRuBLinH ZLuoZ YBioresource Technol.201314337810.1016/j.biortech.2013.06.0261:CAS:528:DC%2BC3sXhtFOht7fI BaerlocherCMcCuskerL BOlsonD HAtlas of Zeolite Framework Types2007AmsterdamElsevier YangC YLuX SLinW GYangX MYaoJ ZChem. Res. Chinese Universities200622452410.1016/S1005-9040(06)60155-41:CAS:528:DC%2BD28Xpt1Sgtb4%3D SakaSWood and Cellulosic Chemistry2000New YorkMarcel Dekker51 VinuRBroadbeltL JEnerg. Environ. Sci.20125980810.1039/c2ee22784c1:CAS:528:DC%2BC38XhvVams7jI GuoX JWangS RWangK GLuoZ YChem. Res. Chinese Universities20112734261:CAS:528:DC%2BC3MXnsl2nsLs%3D ZhangM HGengZ FYuY ZEnerg. Fuel201125266410.1021/ef101619e1:CAS:528:DC%2BC3MXlslSksbg%3D JaeJTompsettG AFosterA JHammondK DAuerbachS MLoboR FHuberG WJ. Catal.201127925710.1016/j.jcat.2011.01.0191:CAS:528:DC%2BC3MXksFyhsrg%3D SahaB CBiotechnol. Adv.20001840310.1016/S0734-9750(00)00044-61:CAS:528:DC%2BD3cXmtlKjsrk%3D StephanidisSNitsosCKalogiannisKIliopoulouELappasATriantafyllidisKCatal. Today20111673710.1016/j.cattod.2010.12.0491:CAS:528:DC%2BC3MXmtFagurY%3D PalmqvistEHahn-HägerdalBBioresource Technol.2000742510.1016/S0960-8524(99)00161-31:CAS:528:DC%2BD3cXjt1Ggs7s%3D MohanDPittmanC USteeleP HEnerg. Fuel20062084810.1021/ef05023971:CAS:528:DC%2BD28XitFGkt7g%3D S Saka (4019_CR28) 2000 S R Wang (4019_CR19) 2013; 143 J Jae (4019_CR14) 2011; 279 D A Bulushev (4019_CR5) 2011; 171 AV Bridgwater (4019_CR1) 1999; 51 M Stöcker (4019_CR12) 2008; 47 E Palmqvist (4019_CR29) 2000; 74 M H Zhang (4019_CR26) 2011; 25 R J Putten van (4019_CR33) 2013; 113 T R Carlson (4019_CR31) 2008; 1 A Corma (4019_CR2) 2007; 107 E Taarning (4019_CR6) 2011; 4 T R Carlson (4019_CR13) 2010; 270 U Räisänen (4019_CR25) 2003; 72 K G Wang (4019_CR11) 2014; 16 Y Zhao (4019_CR20) 2013; 147 C Y Yang (4019_CR22) 2006; 22 L P Guler (4019_CR27) 2002; 106 Q Liu (4019_CR23) 2008; 82 R Vinu (4019_CR34) 2012; 5 H J Park (4019_CR8) 2010; 95 X J Guo (4019_CR10) 2011; 27 A G Gayubo (4019_CR32) 2004; 43 S Stephanidis (4019_CR7) 2011; 167 B C Saha (4019_CR18) 2000; 18 C Baerlocher (4019_CR21) 2007 D J Mihalcik (4019_CR4) 2011; 92 H P Yang (4019_CR17) 2007; 86 D Mohan (4019_CR15) 2006; 20 R Bassilakis (4019_CR24) 2001; 80 G R Ponder (4019_CR30) 1991; 218 S Czernik (4019_CR3) 2004; 18 S R Wang (4019_CR16) 2013; 29 S R Wang (4019_CR9) 2012; 104 |
References_xml | – reference: ZhaoYPanTZuoYGuoQ XFuYBioresource Technol.20131473710.1016/j.biortech.2013.07.0681:CAS:528:DC%2BC3sXhsFWmsbnJ – reference: ParkH JHeoH SJeonJ KKimJRyooRJeongK EParkY KAppl. Catal. B: Environ.20109536510.1016/j.apcatb.2010.01.0151:CAS:528:DC%2BC3cXjt1ansrg%3D – reference: BassilakisRCarangeloRWojtowiczMFuel200180176510.1016/S0016-2361(01)00061-81:CAS:528:DC%2BD3MXmvVegt7g%3D – reference: CzernikSBridgwaterAEnerg. Fuel20041859010.1021/ef034067u1:CAS:528:DC%2BD2cXhsFentbY%3D – reference: TaarningEOsmundsenC MYangXVossBAndersenS IChristensenC HEnerg. Environ. Sci.2011479310.1039/C004518G1:CAS:528:DC%2BC3MXjvFaitbY%3D – reference: WangS RRuBLinH ZLuoZ YBioresource Technol.201314337810.1016/j.biortech.2013.06.0261:CAS:528:DC%2BC3sXhtFOht7fI – reference: WangS RGuoX JLiangTZhouYLuoZ YBioresource Technol.201210472210.1016/j.biortech.2011.10.0781:CAS:528:DC%2BC3MXhs1Olsb%2FL – reference: GuoX JWangS RWangK GLuoZ YChem. Res. Chinese Universities20112734261:CAS:528:DC%2BC3MXnsl2nsLs%3D – reference: PonderG RRichardsG NCarbohyd. Res.199121814310.1016/0008-6215(91)84093-T1:CAS:528:DyaK38XlvFyisw%3D%3D – reference: VinuRBroadbeltL JEnerg. Environ. Sci.20125980810.1039/c2ee22784c1:CAS:528:DC%2BC38XhvVams7jI – reference: YangH PYanRChenH PLeeD HZhengC GFuel200786178110.1016/j.fuel.2006.12.0131:CAS:528:DC%2BD2sXlslWmtLY%3D – reference: YangC YLuX SLinW GYangX MYaoJ ZChem. Res. Chinese Universities200622452410.1016/S1005-9040(06)60155-41:CAS:528:DC%2BD28Xpt1Sgtb4%3D – reference: van PuttenR Jvan der WaalJ Cde JongERasrendraC BHeeresH Jde VriesJ GChem. Rev.2013113149910.1021/cr300182k1:CAS:528:DC%2BC3sXit1Ght7g%3D – reference: StöckerMAngew. Chem. Int. Ed.200847920010.1002/anie.200801476 – reference: WangS RLiangTRuBGuoX JChem. Res. Chinese Universities201329478210.1007/s40242-013-2447-61:CAS:528:DC%2BC3sXhs1ektr7F – reference: SakaSWood and Cellulosic Chemistry2000New YorkMarcel Dekker51 – reference: JaeJTompsettG AFosterA JHammondK DAuerbachS MLoboR FHuberG WJ. Catal.201127925710.1016/j.jcat.2011.01.0191:CAS:528:DC%2BC3MXksFyhsrg%3D – reference: MohanDPittmanC USteeleP HEnerg. Fuel20062084810.1021/ef05023971:CAS:528:DC%2BD28XitFGkt7g%3D – reference: CormaAIborraSVeltyAChem. Rev.2007107241110.1021/cr050989d1:CAS:528:DC%2BD2sXlvVelsbw%3D – reference: LiuQWangS RZhengYLuoZ YCenK FJ. Anal. Appl. Pyrol.20088217010.1016/j.jaap.2008.03.0071:CAS:528:DC%2BD1cXlvVOhtbY%3D – reference: BridgwaterAVJ. Anal. Appl. Pyrol.199951310.1016/S0165-2370(99)00005-41:CAS:528:DyaK1MXjt1ais7g%3D – reference: StephanidisSNitsosCKalogiannisKIliopoulouELappasATriantafyllidisKCatal. Today20111673710.1016/j.cattod.2010.12.0491:CAS:528:DC%2BC3MXmtFagurY%3D – reference: CarlsonT RJaeJLinY CTompsettG AHuberG WJ. Catal.201027011010.1016/j.jcat.2009.12.0131:CAS:528:DC%2BC3cXit1Ontbo%3D – reference: MihalcikD JMullenC ABoatengA AJ. Anal. Appl. Pyrol.20119222410.1016/j.jaap.2011.06.0011:CAS:528:DC%2BC3MXhtVaksb7K – reference: PalmqvistEHahn-HägerdalBBioresource Technol.2000742510.1016/S0960-8524(99)00161-31:CAS:528:DC%2BD3cXjt1Ggs7s%3D – reference: ZhangM HGengZ FYuY ZEnerg. Fuel201125266410.1021/ef101619e1:CAS:528:DC%2BC3MXlslSksbg%3D – reference: SahaB CBiotechnol. Adv.20001840310.1016/S0734-9750(00)00044-61:CAS:528:DC%2BD3cXmtlKjsrk%3D – reference: BaerlocherCMcCuskerL BOlsonD HAtlas of Zeolite Framework Types2007AmsterdamElsevier – reference: RäisänenUPitkänenIHalttunenHHurttaMJ. Therm. Anal. Calorim.20037248110.1023/A:1024557011975 – reference: GulerL PYuY QKenttämaaH IJ. Phys. Chem. A2002106675410.1021/jp025577c1:CAS:528:DC%2BD38XkvVWgs7Y%3D – reference: GayuboA GAguayoA TAtutxaAAguadoROlazarMBilbaoJInd. Eng. Chem. Res.200443261910.1021/ie030792g1:CAS:528:DC%2BD2cXjsFKru7Y%3D – reference: CarlsonT RVisputeT PHuberG WChemSusChem2008139710.1002/cssc.2008000181:CAS:528:DC%2BD1cXntlSqu7s%3D – reference: WangK GKimK HBrownR CGreen Chem.20141672710.1039/C3GC41288A1:CAS:528:DC%2BC2cXhtlaht7c%3D – reference: BulushevD ARossJ RCatal. Today2011171110.1016/j.cattod.2011.02.0051:CAS:528:DC%2BC3MXps1ehsLk%3D – volume: 51 start-page: 3 year: 1999 ident: 4019_CR1 publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/S0165-2370(99)00005-4 – volume: 25 start-page: 2664 year: 2011 ident: 4019_CR26 publication-title: Energ. Fuel doi: 10.1021/ef101619e – volume: 18 start-page: 403 year: 2000 ident: 4019_CR18 publication-title: Biotechnol. Adv. doi: 10.1016/S0734-9750(00)00044-6 – volume: 270 start-page: 110 year: 2010 ident: 4019_CR13 publication-title: J. Catal. doi: 10.1016/j.jcat.2009.12.013 – volume: 113 start-page: 1499 year: 2013 ident: 4019_CR33 publication-title: Chem. Rev. doi: 10.1021/cr300182k – volume: 72 start-page: 481 year: 2003 ident: 4019_CR25 publication-title: J. Therm. Anal. Calorim. doi: 10.1023/A:1024557011975 – start-page: 51 volume-title: Wood and Cellulosic Chemistry year: 2000 ident: 4019_CR28 – volume: 95 start-page: 365 year: 2010 ident: 4019_CR8 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2010.01.015 – volume: 107 start-page: 2411 year: 2007 ident: 4019_CR2 publication-title: Chem. Rev. doi: 10.1021/cr050989d – volume: 104 start-page: 722 year: 2012 ident: 4019_CR9 publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2011.10.078 – volume: 43 start-page: 2619 year: 2004 ident: 4019_CR32 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie030792g – volume: 4 start-page: 793 year: 2011 ident: 4019_CR6 publication-title: Energ. Environ. Sci. doi: 10.1039/C004518G – volume: 167 start-page: 37 year: 2011 ident: 4019_CR7 publication-title: Catal. Today doi: 10.1016/j.cattod.2010.12.049 – volume: 5 start-page: 9808 year: 2012 ident: 4019_CR34 publication-title: Energ. Environ. Sci. doi: 10.1039/c2ee22784c – volume: 80 start-page: 1765 year: 2001 ident: 4019_CR24 publication-title: Fuel doi: 10.1016/S0016-2361(01)00061-8 – volume: 16 start-page: 727 year: 2014 ident: 4019_CR11 publication-title: Green Chem. doi: 10.1039/C3GC41288A – volume-title: Atlas of Zeolite Framework Types year: 2007 ident: 4019_CR21 – volume: 106 start-page: 6754 year: 2002 ident: 4019_CR27 publication-title: J. Phys. Chem. A doi: 10.1021/jp025577c – volume: 147 start-page: 37 year: 2013 ident: 4019_CR20 publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2013.07.068 – volume: 47 start-page: 9200 year: 2008 ident: 4019_CR12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200801476 – volume: 86 start-page: 1781 year: 2007 ident: 4019_CR17 publication-title: Fuel doi: 10.1016/j.fuel.2006.12.013 – volume: 1 start-page: 397 year: 2008 ident: 4019_CR31 publication-title: ChemSusChem doi: 10.1002/cssc.200800018 – volume: 218 start-page: 143 year: 1991 ident: 4019_CR30 publication-title: Carbohyd. Res. doi: 10.1016/0008-6215(91)84093-T – volume: 22 start-page: 524 issue: 4 year: 2006 ident: 4019_CR22 publication-title: Chem. Res. Chinese Universities doi: 10.1016/S1005-9040(06)60155-4 – volume: 92 start-page: 224 year: 2011 ident: 4019_CR4 publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2011.06.001 – volume: 29 start-page: 782 issue: 4 year: 2013 ident: 4019_CR16 publication-title: Chem. Res. Chinese Universities doi: 10.1007/s40242-013-2447-6 – volume: 74 start-page: 25 year: 2000 ident: 4019_CR29 publication-title: Bioresource Technol. doi: 10.1016/S0960-8524(99)00161-3 – volume: 20 start-page: 848 year: 2006 ident: 4019_CR15 publication-title: Energ. Fuel doi: 10.1021/ef0502397 – volume: 82 start-page: 170 year: 2008 ident: 4019_CR23 publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2008.03.007 – volume: 171 start-page: 1 year: 2011 ident: 4019_CR5 publication-title: Catal. Today doi: 10.1016/j.cattod.2011.02.005 – volume: 279 start-page: 257 year: 2011 ident: 4019_CR14 publication-title: J. Catal. doi: 10.1016/j.jcat.2011.01.019 – volume: 27 start-page: 426 issue: 3 year: 2011 ident: 4019_CR10 publication-title: Chem. Res. Chinese Universities – volume: 143 start-page: 378 year: 2013 ident: 4019_CR19 publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2013.06.026 – volume: 18 start-page: 590 year: 2004 ident: 4019_CR3 publication-title: Energ. Fuel doi: 10.1021/ef034067u |
SSID | ssj0039664 |
Score | 2.1026897 |
Snippet | The pyrolysis behaviors of four different hemicellulose monosaccharides, namely, two pentoses(xylose and arabinose) and two hexoses(mannose and galactose)... The pyrolysis behaviors of four different hemicellulose monosaccharides, namely, two pentoses(xylose and arabinose) and two hexoses(mannose and galactose)... |
SourceID | wanfang crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 848 |
SubjectTerms | Analytical Chemistry Chemistry Chemistry and Materials Science Chemistry/Food Science HZSM-5 Inorganic Chemistry Organic Chemistry Physical Chemistry 催化热裂解 催化过程 半纤维素 单糖 工艺机理 挥发性物质 芳香族化合物 |
Title | Pyrolysis Mechanism of Hemicellulose Monosaccharides in Different Catalytic Processes |
URI | http://lib.cqvip.com/qk/86071X/201405/662634584.html https://link.springer.com/article/10.1007/s40242-014-4019-9 https://d.wanfangdata.com.cn/periodical/gdxxhxyj201405027 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BciiX8mirLluQVXGiCkqw8_BxhXioVaseFomeIj8my8JuAiQr7fLraydxeAghcY5f8YztbzyebwD2VUwZKuQeDTNjoIRIPRlL3wu4irigKuPa3kP-_hOdX7Cfl-FlG8ddutfuziVZ79RdsBuzx4kxfZmxeQLu8VVYM_DDZz1YG579-3XiNmBqEHztTLYkm-Z758x8rRFLqXBV5OM70-Hzo8kNoo7myTORj58cPKcbMHJDbt6b3BzOK3moHl6wOb7znzbhYwtEybDRnC1YwXwbPhy7_G-f4OLv8r6oCUvIDG188KSckSIjNcMATqfzaVEiMVpclELZ4K2JxpJMcuJyrlSkvhtamg7IbROPgOVnGJ2ejI7PvTYJg6co45XHBCYUpQxiFAY6JIopuw-EisaaiSSKVCDCRMcUmUyUjwYwxJn0mZAYc83pF-jlRY5fgRhgIKJIi0gZ-UvtC6klpyGyQAqkKunDoBNFettwbaSRZcuxvtw--E44qWrpy20WjWnaES_Xk5mayUztZKa8DwddFdfeG4V_OBGl7TIu3yr9vVWKx8JjvVhcLZbXR9ZoDY25v_OuJgewbms2DwW_Qa-6n-OuATyV3GsV_D_YOPdo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BeygX3oilPCzECZQqqZ2Hj1XVstCHOGylcrL8mGwXtklpstIuv55xEi8PoUq9O2NnZuyZ8Xi-AXhncy7Qoox4WlKAkiKPTG7iKJE2k5rbUjp_D3lymo3PxOfz9Hyo427Ca_eQkuxO6nWxm_DmhEJfQTFPIiN5FzYFheCk1pt7H78eHYQDmJMH3yWTPcimJCUNycz_EfGQChd1Nf1BE_5tmsIiumqeqtTV9A_Dc_gAJmHJ_XuT7zuL1uzYn_-gOd7ynx7C_cERZXu95jyCO1g9hq390P_tCZx9WV3XHWAJu0RfHzxrLlldsg5hAOfzxbxukJEW1422vnhr5rBhs4qFnist6-6GVjQBu-rrEbB5CpPDg8n-OBqaMESWC9lGQmPB0ZgkR02uQ2GF9edAannuhC6yzCY6LVzOUZjCxkgOQ16aWGiDuXSSP4ONqq7wOTByDHSWOZ1Zkr9xsTbOSJ6iSIxGbosRbK9Foa56rA2VebQcn8sdQRyEo-wAX-67aMzVGni5Y6YiZirPTCVH8H79SaB3w-APQURq2MbNTaPfDkrxe_DULZcXy9W3XR-0phTuv7gVyTewNZ6cHKvjT6dH23DPU-kfDb6EjfZ6ga_I-WnN60HZfwGggPpX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61i9RyofSBWGipVfXUKpBg5-EjomxpaREHkOjJ9WOyLCzJQrLSLr--dhJvH6qQqt4nY2c8tmc8M98AvNUpZaiRBzTOrYMSIw1UqsIg4jrhkuqcG_cO-fU4OTxjn8_j867PaeWz3X1Isq1pcChNRb0zMfnOovCNuavFusHM-j8RD_hDWGIO2q4HS3sfvx0d-MOYWmu-CSw7wE1uFdYHNv_GxMErXJTF8MYO_vs15SfUVPYUuSyGv1xCgyfw3U-_zT252p7Walvf_YHs-B__twornYFK9lqNegoPsHgGj_d9X7jncHYyvy0bIBNyja5ueFRdkzInDfIAjsfTcVkhsdpdVlK7oq6RwYqMCuJ7sdSkeTOa2wHIpK1TwOoFnA4OTvcPg645Q6Ap43XAJGYUlYpSlNakyDTT7nyINU0Nk1mS6EjGmUkpMpXpEK0hkeYqZFJhyg2na9ArygLXgViDQSaJkYm2eqFMKJVRnMbIIiWR6qwPm4tlEZMWg0MkDkXHxXj7EPqFErqDNXfdNcZiAcjcCFNYYQonTMH78G7xied3D_F7v1yi297VfdRvOgX5STw0s9nFbH6565zZONxNN_6J5Wt4dPJhIL58Oj7ahGXHpM0lfAm9-naKr6xNVKutTu9_AHYhA0o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pyrolysis+Mechanism+of+Hemicellulose+Monosaccharides+in+Different+Catalytic+Processes&rft.jtitle=%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E5%8C%96%E5%AD%A6%E7%A0%94%E7%A9%B6%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=WANG+Shurong+RU+Bin+LIN+Haizhou+SUN+Wuxing+YU+Chunjiang+LUO+Zhongyang&rft.date=2014-10-01&rft.issn=1005-9040&rft.eissn=2210-3171&rft.issue=5&rft.spage=848&rft.epage=854&rft_id=info:doi/10.1007%2Fs40242-014-4019-9&rft.externalDocID=662634584 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86071X%2F86071X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgdxxhxyj%2Fgdxxhxyj.jpg |