Event-Triggered Adaptive Control of Saturated Nonlinear Systems With Time-Varying Partial State Constraints
This paper investigates the problem of event-triggered adaptive control for a class of nonlinear systems subject to asymmetric input saturation and time-varying partial state constraints. To facilitate analyzing the influence of asymmetric input saturation, the saturation function is converted into...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 50; no. 4; pp. 1485 - 1497 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper investigates the problem of event-triggered adaptive control for a class of nonlinear systems subject to asymmetric input saturation and time-varying partial state constraints. To facilitate analyzing the influence of asymmetric input saturation, the saturation function is converted into a linear form with respect to control input. To achieve the objective that partial states do not exceed the constraints, a more general form of Lyapunov function is offered. Different from some existing results about output/full state constraints, the proposed scheme only requires that the partial states satisfy the time-varying constraints. Moreover, an event-triggered scheme with a varying threshold is designed to reduce the communication burden. With the time-varying asymmetric barrier Lyapunov functions, a novel event-triggered control scheme is developed, which ensures that partial states are without violation of required constraints and the tracking error converges to a small neighborhood of the origin despite appearing as saturated phenomenon. Eventually, the theoretic results are confirmed by two examples. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2267 2168-2275 2168-2275 |
DOI: | 10.1109/TCYB.2018.2865499 |