Immobilization of platinum nanoparticles on 3,4-diaminobenzoyl-functionalized multi-walled carbon nanotube and its electrocatalytic activity

Multi-walled carbon nanotubes (MWCNTs) are functionalized at the sp 2 C–H defect sites with 3,4-diaminobenzoic acid by a “direct” Friedel–Crafts acylation reaction in a mild polyphosphoric acid/phosphorous pentoxide medium. Owing to enhanced surface polarity, the resulting 3,4-diaminobenzoyl-functio...

Full description

Saved in:
Bibliographic Details
Published inJournal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology Vol. 14; no. 2; pp. 1 - 11
Main Authors Choi, Hyun-Jung, Kang, Ji-Ye, Jeon, In-Yup, Eo, Soo-Mi, Tan, Loon-Seng, Baek, Jong-Beom
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2012
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multi-walled carbon nanotubes (MWCNTs) are functionalized at the sp 2 C–H defect sites with 3,4-diaminobenzoic acid by a “direct” Friedel–Crafts acylation reaction in a mild polyphosphoric acid/phosphorous pentoxide medium. Owing to enhanced surface polarity, the resulting 3,4-diaminobenzoyl-functionalized MWCNTs (DAB-MWCNT) are highly dispersible in polar solvents, such as ethanol, N -methyl-2-pyrrolidone, and methanesulfonic acid. The absorption and emission properties of DAB-MWCNT in solution state are qualitatively shown to be sensitive to the pH in the environment. The DAB-MWCNT is used as a stable platform on which to deposit platinum nanoparticles (PNP). The PNP/DAB-MWCNT hybrid displays high electrocatalytic activity with good electrochemical stability for an oxygen reduction reaction under an alkaline condition. Graphical Abstract Multi-walled carbon nanotubes (MWCNTs) were functionalized with 3,4-diaminobenzoic acid to produce 3,4-diaminobenzoyl-functionalized MWCNT (DAB-MWCNT). Platinum nanoparticles (PNP) were deposited to DAB-MWCNT. The resulting PNP/DAB-MWCNT hybrid displayed high electrocatalytic activity.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1388-0764
1572-896X
DOI:10.1007/s11051-011-0704-5