Endotoxins of enteric pathogens modulate the functions of human neutrophils and lymphocytes

The locomotor responses of human peripheral blood neutrophils and lymphocytes were measured by the change from spherical to polarized shapes in the presence of endotoxins (lipopolysaccharide, LPS) of enteric pathogens: S. dysenteriae type 1, V. cholerae Inaba 569B, S. typhimurium, and K. pneumoniae....

Full description

Saved in:
Bibliographic Details
Published inBMB reports Vol. 36; no. 6; pp. 565 - 571
Main Authors Islam, Laila N, Nabi, A H M Nurun
Format Journal Article
LanguageEnglish
Published Korea (South) 30.11.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The locomotor responses of human peripheral blood neutrophils and lymphocytes were measured by the change from spherical to polarized shapes in the presence of endotoxins (lipopolysaccharide, LPS) of enteric pathogens: S. dysenteriae type 1, V. cholerae Inaba 569B, S. typhimurium, and K. pneumoniae. We reported earlier that these endotoxins are chemotactic factors for the neutrophils since they stimulated cell polarization within a few minutes of incubation. Endotoxins had an inhibitory effect upon neutrophil phagocytosis of opsonized yeast and the cells engulfed fewer yeasts. Interestingly, endotoxins increased neutrophil adhesion to clean glass surfaces, but stimulated the cells to exhibit increased random locomotion (chemokinesis) through cellulose nitrate filters and show an enhanced ability to reduce nitroblue tetrazolium (NBT) dye. Unlike neutrophils, lymphocytes direct from blood do not show polarized morphology towards chemotactic factors but the cells acquire locomotor capacity during 24-72 h culture with mitogens such as phytohemagglutinin (PHA), phorbol myristate acetate or concanavalin A. Stimulation of blood lymphocytes with endotoxins did not induce cell polarization in short-term but long-term culture resulted in an increase in the proportion of polarized cells that acquired locomotor morphologies. The majority of these cells were identified as esterase negative B-lymphocytes that migrated through filters. Despite the optimum time of incubation for each of these cell types being different, we found that lymphocytes respond to much lower concentrations of endotoxins than the neutrophils. These findings suggest that endotoxins of enteric pathogens modulate the functions of human blood neutrophils and lymphocytes.
ISSN:1225-8687
1976-6696
0219-1024
DOI:10.5483/bmbrep.2003.36.6.565