Multi-Level Protocol for Mechanistic Reaction Studies Using Semi-Local Fitted Potential Energy Surfaces

In this work, we propose a multi-level protocol for routine theoretical studies of chemical reaction mechanisms. The initial reaction paths of our investigated systems are sampled using the Nudged Elastic Band (NEB) method driven by a cheap electronic structure method. Forces recalculated at the mor...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 25; no. 15; p. 8530
Main Authors Piskor, Tomislav, Pinski, Peter, Mast, Thilo, Rybkin, Vladimir
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, we propose a multi-level protocol for routine theoretical studies of chemical reaction mechanisms. The initial reaction paths of our investigated systems are sampled using the Nudged Elastic Band (NEB) method driven by a cheap electronic structure method. Forces recalculated at the more accurate electronic structure theory for a set of points on the path are fitted with a machine learning technique (in our case symmetric gradient domain machine learning or sGDML) to produce a semi-local reactive potential energy surface (PES), embracing reactants, products and transition state (TS) regions. This approach has been successfully applied to a unimolecular (Bergman cyclization of enediyne) and a bimolecular (S 2 substitution) reaction. In particular, we demonstrate that with only 50 to 150 energy-force evaluations with the accurate reference methods (here complete-active-space self-consistent field, CASSCF, and coupled-cluster singles and doubles, CCSD) it is possible to construct a semi-local PES giving qualitative agreement for stationary-point geometries, intrinsic reaction coordinates and barriers. Furthermore, we find a qualitative agreement in vibrational frequencies and reaction rate coefficients. The key aspect of the method's performance is its multi-level nature, which not only saves computational effort but also allows extracting meaningful information along the reaction path, characterized by zero gradients in all but one direction. Agnostic to the nature of the TS and computationally economic, the protocol can be readily automated and routinely used for mechanistic reaction studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25158530