Event-Based Secure Leader-Following Consensus Control for Multiagent Systems With Multiple Cyber Attacks

This article concentrates on event-based secure leader-following consensus control for multiagent systems (MASs) with multiple cyber attacks, which contain replay attacks and denial-of-service (DoS) attacks. A new multiple cyber-attacks model is first built by considering replay attacks and DoS atta...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 51; no. 1; pp. 162 - 173
Main Authors Liu, Jinliang, Yin, Tingting, Yue, Dong, Karimi, Hamid Reza, Cao, Jinde
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article concentrates on event-based secure leader-following consensus control for multiagent systems (MASs) with multiple cyber attacks, which contain replay attacks and denial-of-service (DoS) attacks. A new multiple cyber-attacks model is first built by considering replay attacks and DoS attacks simultaneously. Different from the existing researches on MASs with a fixed topological graph, the changes of communication topologies caused by DoS attacks are considered for MASs. Besides, an event-triggered mechanism is adopted for mitigating a load of network bandwidth by scheduling the transmission of sampled data. Then, an event-based consensus control protocol is first developed for MASs subjected to multiple cyber attacks. In view of this, by using the Lyapunov stability theory, sufficient conditions are obtained to ensure the mean-square exponential consensus of MASs. Furthermore, the event-based controller gain is derived by solving a set of linear matrix inequalities. Finally, an example is simulated for confirming the effectiveness of the theoretical results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2020.2970556