Dynamic scaling in the mesh adaptive direct search algorithm for blackbox optimization
Blackbox optimization deals with situations in which the objective function and constraints are typically computed by launching a time-consuming computer simulation. The subject of this work is the mesh adaptive direct search ( mads ) class of algorithms for blackbox optimization. We propose a way t...
Saved in:
Published in | Optimization and engineering Vol. 17; no. 2; pp. 333 - 358 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1389-4420 1573-2924 |
DOI | 10.1007/s11081-015-9283-0 |
Cover
Loading…
Summary: | Blackbox optimization deals with situations in which the objective function and constraints are typically computed by launching a time-consuming computer simulation. The subject of this work is the mesh adaptive direct search (
mads
) class of algorithms for blackbox optimization. We propose a way to dynamically scale the mesh, which is the discrete spatial structure on which
mads
relies, so that it automatically adapts to the characteristics of the problem to solve. Another objective of the paper is to revisit the
mads
method in order to ease its presentation and to reflect recent developments. This new presentation includes a nonsmooth convergence analysis. Finally, numerical tests are conducted to illustrate the efficiency of the dynamic scaling, both on academic test problems and on a supersonic business jet design problem. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1389-4420 1573-2924 |
DOI: | 10.1007/s11081-015-9283-0 |