Deep Generative Model of Individual Variability in fMRI Images of Psychiatric Patients
Neuroimaging techniques, such as the resting-state functional magnetic resonance imaging (fMRI), have been investigated to find objective biomarkers of neuro-logical and psychiatric disorders. Objective biomarkers potentially provide a refined diagnosis and quantitative measurements of the effects o...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 68; no. 2; pp. 592 - 605 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Neuroimaging techniques, such as the resting-state functional magnetic resonance imaging (fMRI), have been investigated to find objective biomarkers of neuro-logical and psychiatric disorders. Objective biomarkers potentially provide a refined diagnosis and quantitative measurements of the effects of treatment. However, fMRI images are sensitive to individual variability, such as functional topography and personal attributes. Suppressing the irrelevant individual variability is crucial for finding objective biomarkers for multiple subjects. Herein, we propose a structured generative model based on deep learning (i.e., a deep generative model) that considers such individual variability. The proposed model builds a joint distribution of (preprocessed) fMRI images, state (with or without a disorder), and individual variability. It can thereby discriminate individual variability from the subject's state. Experimental results demonstrate that the proposed model can diagnose unknown subjects with greater accuracy than conventional approaches. Moreover, the diagnosis is fairer to gender and state, because the proposed model extracts subject attributes (age, gender, and scan site) in an unsupervised manner. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0018-9294 1558-2531 1558-2531 |
DOI: | 10.1109/TBME.2020.3008707 |