Efficient Large-Scale Multiobjective Optimization Based on a Competitive Swarm Optimizer

There exist many multiobjective optimization problems (MOPs) containing a large number of decision variables in real-world applications, which are known as large-scale MOPs. Due to the ineffectiveness of existing operators in finding optimal solutions in a huge decision space, some decision variable...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 50; no. 8; pp. 3696 - 3708
Main Authors Tian, Ye, Zheng, Xiutao, Zhang, Xingyi, Jin, Yaochu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:There exist many multiobjective optimization problems (MOPs) containing a large number of decision variables in real-world applications, which are known as large-scale MOPs. Due to the ineffectiveness of existing operators in finding optimal solutions in a huge decision space, some decision variable division-based algorithms have been tailored for improving the search efficiency in solving large-scale MOPs. However, these algorithms will encounter difficulties when solving problems with complicated landscapes, as the decision variable division is likely to be inaccurate and time consuming. In this paper, we propose a competitive swarm optimizer (CSO)-based efficient search for solving large-scale MOPs. The proposed algorithm adopts a new particle updating strategy that suggests a two-stage strategy to update position, which can highly improve the search efficiency. The experimental results on large-scale benchmark MOPs and an application example demonstrate the superiority of the proposed algorithm over several state-of-the-art multiobjective evolutionary algorithms, including problem transformation-based algorithm, decision variable clustering-based algorithm, particle swarm optimization algorithm, and estimation of distribution algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2019.2906383