Stochastic Optimal Control for Robot Manipulation Skill Learning Under Time-Varying Uncertain Environment
In this article, a novel stochastic optimal control method is developed for robot manipulator interacting with a time-varying uncertain environment. The unknown environment model is described as a nonlinear system with time-varying parameters as well as stochastic information, which is learned via t...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 54; no. 4; pp. 2015 - 2025 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2022.3211440 |
Cover
Loading…
Abstract | In this article, a novel stochastic optimal control method is developed for robot manipulator interacting with a time-varying uncertain environment. The unknown environment model is described as a nonlinear system with time-varying parameters as well as stochastic information, which is learned via the Gaussian process regression (GPR) method as the external dynamics. Integrating the learned external dynamics as well as the stochastic uncertainties, the complete interaction system dynamics are obtained. Then the iterative linear quadratic Gaussian with learned external dynamics (ILQG-LEDs) method is presented to obtain the optimal manipulation control parameters, namely, the feedforward force, the reference trajectory, as well as the impedance parameters, subject to time-varying environment dynamics. The comparative simulation studies verify the advantages of the presented method, and the experimental studies of the peg-hole-insertion task prove that this method can deal with complex manipulation tasks. |
---|---|
AbstractList | In this article, a novel stochastic optimal control method is developed for robot manipulator interacting with a time-varying uncertain environment. The unknown environment model is described as a nonlinear system with time-varying parameters as well as stochastic information, which is learned via the Gaussian process regression (GPR) method as the external dynamics. Integrating the learned external dynamics as well as the stochastic uncertainties, the complete interaction system dynamics are obtained. Then the iterative linear quadratic Gaussian with learned external dynamics (ILQG-LEDs) method is presented to obtain the optimal manipulation control parameters, namely, the feedforward force, the reference trajectory, as well as the impedance parameters, subject to time-varying environment dynamics. The comparative simulation studies verify the advantages of the presented method, and the experimental studies of the peg-hole-insertion task prove that this method can deal with complex manipulation tasks.In this article, a novel stochastic optimal control method is developed for robot manipulator interacting with a time-varying uncertain environment. The unknown environment model is described as a nonlinear system with time-varying parameters as well as stochastic information, which is learned via the Gaussian process regression (GPR) method as the external dynamics. Integrating the learned external dynamics as well as the stochastic uncertainties, the complete interaction system dynamics are obtained. Then the iterative linear quadratic Gaussian with learned external dynamics (ILQG-LEDs) method is presented to obtain the optimal manipulation control parameters, namely, the feedforward force, the reference trajectory, as well as the impedance parameters, subject to time-varying environment dynamics. The comparative simulation studies verify the advantages of the presented method, and the experimental studies of the peg-hole-insertion task prove that this method can deal with complex manipulation tasks. In this article, a novel stochastic optimal control method is developed for robot manipulator interacting with a time-varying uncertain environment. The unknown environment model is described as a nonlinear system with time-varying parameters as well as stochastic information, which is learned via the Gaussian process regression (GPR) method as the external dynamics. Integrating the learned external dynamics as well as the stochastic uncertainties, the complete interaction system dynamics are obtained. Then the iterative linear quadratic Gaussian with learned external dynamics (ILQG-LEDs) method is presented to obtain the optimal manipulation control parameters, namely, the feedforward force, the reference trajectory, as well as the impedance parameters, subject to time-varying environment dynamics. The comparative simulation studies verify the advantages of the presented method, and the experimental studies of the peg-hole-insertion task prove that this method can deal with complex manipulation tasks. |
Author | Liu, Xing Liu, Zhengxiong Huang, Panfeng |
Author_xml | – sequence: 1 givenname: Xing orcidid: 0000-0002-5327-4908 surname: Liu fullname: Liu, Xing email: xingliu@nwpu.edu.cn organization: Research Center for Intelligent Robotics, School of Astronautics, and the National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Zhengxiong orcidid: 0000-0002-9427-4066 surname: Liu fullname: Liu, Zhengxiong organization: Research Center for Intelligent Robotics, School of Astronautics, and the National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Panfeng orcidid: 0000-0002-5132-9602 surname: Huang fullname: Huang, Panfeng email: pfhuang@nwpu.edu.cn organization: Research Center for Intelligent Robotics, School of Astronautics, and the National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36256715$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vFCEcxompsS_2AxgTQ9KLl1l5mYHhqJtqm6xpYrcmnggwjFIZWIFp0m9f1l330INcIP_8ngd4nlNwFGKwALzBaIExEh_Wyx-fFgQRsqAE47ZFL8AJwaxvCOHd0eHM-DE4z_ke1dXXkehfgWPKSMc47k6Auy3R_FK5OANvNsVNysNlDCVFD8eY4LeoY4FfVXCb2aviYoC3v533cGVVCi78hHdhsAmu3WSb7yo97kbGpqJcgJfhwaUYJhvKa_ByVD7b8_1-Bu4-X66XV83q5sv18uOqMbQVpSHCMDzUH2LNNNVCE90xxaimI7dCdNhQ3XGmsWCCEtszZCltcUvUSIduUPQMvN_5blL8M9tc5OSysd6rYOOcJeGEtajv276iF8_Q-zinUF8nSbVHLa7WlXq3p2Y92UFuUk0pPcp_IVYA7wCTYs7JjgcEI7ntSm67ktuu5L6rquHPNMaVv_mWpJz_r_LtTumstYebhCC045w-ASVan8Q |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1109_TIE_2022_3227279 crossref_primary_10_1109_TCYB_2024_3436021 crossref_primary_10_1109_TSMC_2024_3514154 crossref_primary_10_1109_TASE_2024_3469961 crossref_primary_10_1016_j_compeleceng_2024_109605 |
Cites_doi | 10.1080/00207179.2013.827799 10.1109/ICRA.2012.6224586 10.1109/TSMCB.2010.2043839 10.1109/TASE.2020.2983225 10.1109/TCST.2013.2286194 10.1177/0278364911402527 10.1109/TII.2020.3036693 10.1109/TASE.2020.3045655 10.1109/DEVLRN.2011.6037312 10.1109/TMECH.2020.3047919 10.1109/TRO.2015.2419873 10.1109/TAMD.2012.2205924 10.1109/IROS.2011.6094877 10.1109/TRO.2007.892229 10.1126/science.aat8414 10.1109/TCYB.2020.2998984 10.1109/IROS.2016.7759417 10.1109/TCYB.2018.2828654 10.3389/frobt.2016.00030 10.1109/TRO.2018.2830405 10.1109/TSMC.2019.2920870 10.1109/ECC.2015.7330913 10.1007/978-3-642-05181-4_4 10.1109/TRO.2016.2597322 10.1109/TCST.2020.2971944 10.1109/TNNLS.2014.2378812 10.1109/ACC.2005.1469949 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2022.3211440 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Aerospace Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 2025 |
ExternalDocumentID | 36256715 10_1109_TCYB_2022_3211440 9923577 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61725303; 62103334 funderid: 10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2021M702669 funderid: 10.13039/501100002858 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c349t-29c61d1101b6b3b9b2b56a63b3f7e9951c3b576b196932e860e334142af3d5da3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 07:58:42 EDT 2025 Mon Jun 30 04:11:27 EDT 2025 Mon Jul 21 06:07:44 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Tue Jul 01 00:54:03 EDT 2025 Wed Aug 27 03:03:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c349t-29c61d1101b6b3b9b2b56a63b3f7e9951c3b576b196932e860e334142af3d5da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9427-4066 0000-0002-5132-9602 0000-0002-5327-4908 |
PMID | 36256715 |
PQID | 2969041334 |
PQPubID | 85422 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9923577 proquest_journals_2969041334 crossref_primary_10_1109_TCYB_2022_3211440 crossref_citationtrail_10_1109_TCYB_2022_3211440 pubmed_primary_36256715 proquest_miscellaneous_2726408848 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 Wang (ref29) 2019 ref10 Deisenroth (ref18) 2010; 9 ref2 ref1 ref17 ref16 ref19 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref3 ref6 ref5 Hogan (ref4) 1985; 107 Li (ref11) |
References_xml | – ident: ref8 doi: 10.1080/00207179.2013.827799 – ident: ref6 doi: 10.1109/ICRA.2012.6224586 – ident: ref26 doi: 10.1109/TSMCB.2010.2043839 – ident: ref5 doi: 10.1109/TASE.2020.2983225 – ident: ref20 doi: 10.1109/TCST.2013.2286194 – ident: ref15 doi: 10.1177/0278364911402527 – ident: ref31 doi: 10.1109/TII.2020.3036693 – ident: ref30 doi: 10.1109/TASE.2020.3045655 – ident: ref14 doi: 10.1109/DEVLRN.2011.6037312 – ident: ref28 doi: 10.1109/TMECH.2020.3047919 – ident: ref21 doi: 10.1109/TRO.2015.2419873 – ident: ref3 doi: 10.1109/TAMD.2012.2205924 – ident: ref16 doi: 10.1109/IROS.2011.6094877 – ident: ref27 doi: 10.1109/TRO.2007.892229 – start-page: 222 volume-title: Proc. ICINCO ident: ref11 article-title: Iterative linear quadratic regulator design for nonlinear biological movement systems – volume: 9 volume-title: Efficient Reinforcement Learning Using Gaussian Processes year: 2010 ident: ref18 – ident: ref1 doi: 10.1126/science.aat8414 – ident: ref13 doi: 10.1109/TCYB.2020.2998984 – ident: ref24 doi: 10.1109/IROS.2016.7759417 – ident: ref10 doi: 10.1109/TCYB.2018.2828654 – ident: ref25 doi: 10.3389/frobt.2016.00030 – volume: 107 start-page: 304 issue: 1 year: 1985 ident: ref4 article-title: Impedance control: An approach to manipulation, part I—Theory, part II—Implementation, part III—Applications publication-title: ASME Trans. J. Dyn. Syst. Meas. Control B – ident: ref23 doi: 10.1109/TRO.2018.2830405 – volume-title: arXiv:1907.02057 year: 2019 ident: ref29 article-title: Benchmarking model-based reinforcement learning – ident: ref7 doi: 10.1109/TSMC.2019.2920870 – ident: ref19 doi: 10.1109/ECC.2015.7330913 – ident: ref17 doi: 10.1007/978-3-642-05181-4_4 – ident: ref22 doi: 10.1109/TRO.2016.2597322 – ident: ref9 doi: 10.1109/TCST.2020.2971944 – ident: ref2 doi: 10.1109/TNNLS.2014.2378812 – ident: ref12 doi: 10.1109/ACC.2005.1469949 |
SSID | ssj0000816898 |
Score | 2.3877468 |
Snippet | In this article, a novel stochastic optimal control method is developed for robot manipulator interacting with a time-varying uncertain environment. The... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2015 |
SubjectTerms | Control methods Environment models Feedforward control Gaussian process Gaussian processes Impedance iterative linear quadratic Gaussian with learned external dynamic (ILQG-LED) method Iterative methods Manipulator dynamics model-based reinforcement learning Nonlinear systems Optimal control Parameters Robot arms Robot control robot manipulation skill robot-environment interaction Robots stochastic optimal manipulation control Stochastic processes System dynamics Task complexity Time-varying systems time-varying uncertain environment Trajectory Unknown environments |
Title | Stochastic Optimal Control for Robot Manipulation Skill Learning Under Time-Varying Uncertain Environment |
URI | https://ieeexplore.ieee.org/document/9923577 https://www.ncbi.nlm.nih.gov/pubmed/36256715 https://www.proquest.com/docview/2969041334 https://www.proquest.com/docview/2726408848 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp15oKX1sgcqVemgrvHht53VsVyBUaUEqu4ieIttx6IptgiB7gF_P2HECQlD1ZsV2YmfGnhl7Zj6Az1aWOklLS5GDIyrTWNBUpopK5B1tUT4w6QKFJ0fx4Uz-PIvOVmC3j4Wx1nrnMzt0RX-XX9Rm6Y7K9rLMJWdJVmEVDbc2Vqs_T_EAEh76lmOBolaRhEvMEcv2puPfP9AY5Hwo0OKR0gHA4dYdxYnDw30gkTzEyvPappc6By9h0o23dTa5GC4bPTS3j1I5_u-EXsF6UD_J95ZfNmDFVq9hIyzwa_IlZKH-ugnzk6Y2f5RL40yOcV_5i93GrV87QUWX_Kp13ZCJquYdAhg5uZgvFiRkbD0nHlKJuBgTeqqubtpHpnVBIPv3AXZvYHawPx0f0oDLQI2QWUN5ZuJRgf91pGMtdKa5jmIVCy3KxGaoshmh0YzRLvOO4DaNmRUoLCVXpSiiQom3sFbVlX0PRCtsppNCiBLrWalGhUYVjVvFeGFYOgDW0SY3IWm5w85Y5N54YVnuKJs7yuaBsgP41ne5bDN2_KvxpqNK3zAQZADbHQPkYU1f5xynw1DmCzmAT301rkZ3xaIqWy-xTYKjR7aXOPJ3LeP07-747cPT39yCFziy4BW0DWvN1dLuoMLT6I-e0-8Abgz4dg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAL9MFjSylG4gAIb7228zqWVauldItEt6icIttx2lW3CWqzB_j1jB0nRQgQNyu2k3Fm7BnbM_MBvLKy1ElaWooSHFGZxoKmMlVUouxoi_qBSRcoPD2OJ6fy8Cw6W4F3fSyMtdY7n9mhK_q7_KI2S3dUtptlLjlLcgfuRi4Yt43W6k9UPISEB7_lWKBoVyThGnPEst3Z-Ot73A5yPhS455HSQcDh4h3FiUPE_UUneZCVv9ubXu8cPIRpR3HrbnI5XDZ6aH78lszxf4e0Bg-CAUr2WolZhxVbbcB6mOI35HXIQ_1mE-YnTW0ulEvkTD7hynKF3catZztBU5d8rnXdkKmq5h0GGDm5nC8WJORsPSceVIm4KBP6RV1_bx-Z1gmB7N-G2D2C04P92XhCAzIDNUJmDeWZiUcF_teRjrXQmeY6ilUstCgTm6HRZoTGjYx2uXcEt2nMrEB1KbkqRREVSjyG1aqu7FMgWmEznRRClFjPSjUqNBpp3CrGC8PSAbCON7kJacsdesYi99sXluWOs7njbB44O4C3fZdvbc6OfzXedFzpGwaGDGC7E4A8zOqbnONwGGp9IQfwsq_G-eguWVRl6yW2SZB6FHyJlD9pBad_dydvW3_-5gu4N5lNj_KjD8cfn8F9pDL4CG3DanO9tM_R_Gn0jpf6n4a2-74 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Optimal+Control+for+Robot+Manipulation+Skill+Learning+Under+Time-Varying+Uncertain+Environment&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liu%2C+Xing&rft.au=Liu%2C+Zhengxiong&rft.au=Huang%2C+Panfeng&rft.date=2024-04-01&rft.eissn=2168-2275&rft.volume=PP&rft_id=info:doi/10.1109%2FTCYB.2022.3211440&rft_id=info%3Apmid%2F36256715&rft.externalDocID=36256715 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |