Stochastic Optimal Control for Robot Manipulation Skill Learning Under Time-Varying Uncertain Environment
In this article, a novel stochastic optimal control method is developed for robot manipulator interacting with a time-varying uncertain environment. The unknown environment model is described as a nonlinear system with time-varying parameters as well as stochastic information, which is learned via t...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 54; no. 4; pp. 2015 - 2025 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this article, a novel stochastic optimal control method is developed for robot manipulator interacting with a time-varying uncertain environment. The unknown environment model is described as a nonlinear system with time-varying parameters as well as stochastic information, which is learned via the Gaussian process regression (GPR) method as the external dynamics. Integrating the learned external dynamics as well as the stochastic uncertainties, the complete interaction system dynamics are obtained. Then the iterative linear quadratic Gaussian with learned external dynamics (ILQG-LEDs) method is presented to obtain the optimal manipulation control parameters, namely, the feedforward force, the reference trajectory, as well as the impedance parameters, subject to time-varying environment dynamics. The comparative simulation studies verify the advantages of the presented method, and the experimental studies of the peg-hole-insertion task prove that this method can deal with complex manipulation tasks. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2267 2168-2275 2168-2275 |
DOI: | 10.1109/TCYB.2022.3211440 |