Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES

In the present paper, extremely unsteady shock wave buffet induced by strong shock wave/boundary-layer interactions (SWBLI) on the upper surface of an OAT15A supercritical airfoil at Mach number of 0.73 and angle of attack of 3.5 degrees is first numerically simulated by IDDES, one of the most advan...

Full description

Saved in:
Bibliographic Details
Published inScience China. Physics, mechanics & astronomy Vol. 55; no. 2; pp. 260 - 271
Main Authors Huang, JingBo, Xiao, ZhiXiang, Liu, Jian, Fu, Song
Format Journal Article
LanguageEnglish
Published Heidelberg SP Science China Press 01.02.2012
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the present paper, extremely unsteady shock wave buffet induced by strong shock wave/boundary-layer interactions (SWBLI) on the upper surface of an OAT15A supercritical airfoil at Mach number of 0.73 and angle of attack of 3.5 degrees is first numerically simulated by IDDES, one of the most advanced RANS/LES hybrid methods. The results imply that conventional URANS methods are unable to effectively predict the buffet phenomenon on the wing surface; IDDES, which involves more flow physics, predicted buffet phenomenon. Some complex flow phenomena are predicted and demonstrated, such as periodical oscillations of shock wave in the streamwise direction, strong shear layer detached from the shock wave due to SWBLI and plenty of small scale structures broken down by the shear layer instability and in the wake. The root mean square (RMS) of fluctuating pressure coefficients and streamwise range of shock wave oscillation reasonably agree with experimental data. Then, two vortex generators (VG) both with an inclination angle of 30 degrees to the main flow directions are mounted in front of the shock wave region on the upper surface to suppress shock wave buffet. The results show that shock wave buffet can be significantly suppressed by VGs, the RMS level of pressure in the buffet region is effectively reduced, and averaged shock wave position is obviously pushed downstream, resulting in increased total lift.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-7348
1869-1927
DOI:10.1007/s11433-011-4601-9