Consensus of Multiagent Systems Subject to Partially Accessible and Overlapping Markovian Network Topologies
This paper addresses the consensus problem for a continuous-time multiagent system (MAS) with Markovian network topologies and external disturbance. Different from some existing results, global jumping modes of the Markovian network topologies are not required to be completely available for consensu...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 47; no. 8; pp. 1807 - 1819 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper addresses the consensus problem for a continuous-time multiagent system (MAS) with Markovian network topologies and external disturbance. Different from some existing results, global jumping modes of the Markovian network topologies are not required to be completely available for consensus protocol design. A network topology mode regulator (NTMR) is first developed to decompose unavailable global modes into several overlapping groups, where overlapping groups refer to the scenario that there exist commonly shared local modes between any two distinct groups. The NTMR schedules which group modes each agent may access at every time step. Then a new group mode-dependent distributed consensus protocol on the basis of relative measurement outputs of neighboring agents is delicately constructed. In this sense, the proposed consensus protocol relies only on group and partial modes and eliminates the need for complete knowledge of global modes. Sufficient conditions on the existence of desired distributed consensus protocols are derived to ensure consensus of the MAS with a prescribed H_{\infty } performance level. Two examples are provided to show the effectiveness of the proposed consensus protocol. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2267 2168-2275 2168-2275 |
DOI: | 10.1109/TCYB.2016.2570860 |