Evidence for the existence of de novo lipogenesis in goose granulosa cells
ABSTRACT De novo lipogenesis (DNL) is an important physiological mechanism, but it is poorly understood in avian follicles. The protein distribution patterns of three key genes related to DNL (i.e., FAS, ACC, and PPARγ) were firstly determined in geese developing follicles using immunohistochemistry...
Saved in:
Published in | Poultry science Vol. 98; no. 2; pp. 1023 - 1030 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Poultry Science Association, Inc
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | ABSTRACT
De novo lipogenesis (DNL) is an important physiological mechanism, but it is poorly understood in avian follicles. The protein distribution patterns of three key genes related to DNL (i.e., FAS, ACC, and PPARγ) were firstly determined in geese developing follicles using immunohistochemistry, and our results showed that all three proteins were present in both prehierarchical and hierarchical follicles. Furthermore, it was revealed by qPCR that transcripts of these three genes were widely expressed in theca and granulosa layers of all staged follicles; however, the expression of DNL-related genes in granulosa cell changed significantly (P < 0.05) after follicle selection (FAS and PPARγ) and before ovulation (FAS). It is suggested that the DNL mechanism may be closely related to the follicular selection, while FAS may be closely associated with ovulation and steroidogenesis. These results suggested that DNL exists throughout follicle development and it potentially have an important role in the process of follicular selection, development, steroidogenesis, and ovulation, especially in their granulosa layers. To further demonstrate this point, granulosa cells isolated from hierarchical follicles were cultured in vitro. By analyzing the mRNA and protein expression patterns of these three genes, the fatty acid synthase enzyme activity, the contents of extracellular triglyceride, and intracellular lipids, as well as the cell activity at different time points of in vitro culture (0, 6, 12, and 18 h). These findings not only ensured the existence of DNL in the granulosa cells of goose follicles, but also suggested the complex process of lipid metabolism that associated with DNL, may play an important role in cell proliferation and physiological functions. Taken together, we first confirmed the existence of lipid metabolism, especially the DNL in goose follicles, and further suggested its role in the follicles, especially in the granulosa cells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0032-5791 1525-3171 |
DOI: | 10.3382/ps/pey400 |