Identification of Network Topology Variations Based on Spectral Entropy

Based on the fact that the traditional probability distribution entropy describing a local feature of the system cannot effectively capture the global topology variations of the network, some indicators constructed by the network adjacency matrix and Laplacian matrix come into being. Specifically, t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 10; pp. 10468 - 10478
Main Authors Su, Housheng, Chen, Dan, Pan, Gui-Jun, Zeng, Zhigang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Based on the fact that the traditional probability distribution entropy describing a local feature of the system cannot effectively capture the global topology variations of the network, some indicators constructed by the network adjacency matrix and Laplacian matrix come into being. Specifically, these measures are based on the eigenvalues of the scaled Laplace matrix, the eigenvalues of the network communicability matrix, and the spectral entropy based on information diffusion that has been proposed recently, respectively. In this article, we systematically study the dependence of these measures on the topological structure of the network. We prove from various aspects that spectral entropy has a better ability to identify the global topology than the traditional distribution entropy. Furthermore, the indicator based on the eigenvalues of the network communicability matrix achieves good results in some aspects while, overall, the spectral entropy is able to identify network topology variations from a global perspective.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2021.3070080