Quantifying and estimating the predictive accuracy for censored time‐to‐event data with competing risks

This paper focuses on quantifying and estimating the predictive accuracy of prognostic models for time‐to‐event outcomes with competing events. We consider the time‐dependent discrimination and calibration metrics, including the receiver operating characteristics curve and the Brier score, in the co...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 37; no. 21; pp. 3106 - 3124
Main Authors Wu, Cai, Li, Liang
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 20.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper focuses on quantifying and estimating the predictive accuracy of prognostic models for time‐to‐event outcomes with competing events. We consider the time‐dependent discrimination and calibration metrics, including the receiver operating characteristics curve and the Brier score, in the context of competing risks. To address censoring, we propose a unified nonparametric estimation framework for both discrimination and calibration measures, by weighting the censored subjects with the conditional probability of the event of interest given the observed data. The proposed method can be extended to time‐dependent predictive accuracy metrics constructed from a general class of loss functions. We apply the methodology to a data set from the African American Study of Kidney Disease and Hypertension to evaluate the predictive accuracy of a prognostic risk score in predicting end‐stage renal disease, accounting for the competing risk of pre–end‐stage renal disease death, and evaluate its numerical performance in extensive simulation studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0277-6715
1097-0258
1097-0258
DOI:10.1002/sim.7806