A Causality-Driven Graph Convolutional Network for Postural Abnormality Diagnosis in Parkinsonians

Abnormal posture is a common movement disorder in the progress of Parkinson's disease (PD), and this abnormality can increase the risk of falls or even disabilities. The conventional assessment approach depends on the judgment of well-trained experts via canonical scales. However, this approach...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 42; no. 12; pp. 3752 - 3763
Main Authors Tang, Xinlu, Guo, Rui, Zhang, Chencheng, Zhuang, Xiahai, Qian, Xiaohua
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2023.3305378

Cover

Abstract Abnormal posture is a common movement disorder in the progress of Parkinson's disease (PD), and this abnormality can increase the risk of falls or even disabilities. The conventional assessment approach depends on the judgment of well-trained experts via canonical scales. However, this approach requires extensive clinical expertise and is highly subjective. Considering the potential of quantitative susceptibility mapping (QSM) in PD diagnosis, this study explored the QSM-based method for the automated classification between PD patients with and without postural abnormalities. Nevertheless, a major challenge is that unstable non-causal features typically lead to less reliable performance. Therefore, we propose a causality-driven graph-convolutional-network framework based on multi-instance learning, where performance stability is enhanced through the invariant prediction principle and causal interventions. Specifically, we adopt an intervention strategy that combines a non-causal intervenor with causal prediction. A stability constraint is proposed to ensure robust integrated prediction under different interventions. Moreover, an intra-class homogeneity constraint is enforced for each individually-learned causality scoring module to promote the extraction of group-level general features, and hence achieve a balance between subject-specific and group-level features. The proposed method demonstrated promising performance through extensive experiments on a real clinical dataset. Also, the features extracted by our method coincide with those reported in previous medical studies on PD posture abnormalities. In general, our work provides a clinically-valuable approach for automated, objective, and reliable diagnosis of postural abnormalities in Parkinsonians. Our source code is publicly available at https://github.com/SJTUBME-QianLab/CausalGCN-PDPA .
AbstractList Abnormal posture is a common movement disorder in the progress of Parkinson's disease (PD), and this abnormality can increase the risk of falls or even disabilities. The conventional assessment approach depends on the judgment of well-trained experts via canonical scales. However, this approach requires extensive clinical expertise and is highly subjective. Considering the potential of quantitative susceptibility mapping (QSM) in PD diagnosis, this study explored the QSM-based method for the automated classification between PD patients with and without postural abnormalities. Nevertheless, a major challenge is that unstable non-causal features typically lead to less reliable performance. Therefore, we propose a causality-driven graph-convolutional-network framework based on multi-instance learning, where performance stability is enhanced through the invariant prediction principle and causal interventions. Specifically, we adopt an intervention strategy that combines a non-causal intervenor with causal prediction. A stability constraint is proposed to ensure robust integrated prediction under different interventions. Moreover, an intra-class homogeneity constraint is enforced for each individually-learned causality scoring module to promote the extraction of group-level general features, and hence achieve a balance between subject-specific and group-level features. The proposed method demonstrated promising performance through extensive experiments on a real clinical dataset. Also, the features extracted by our method coincide with those reported in previous medical studies on PD posture abnormalities. In general, our work provides a clinically-valuable approach for automated, objective, and reliable diagnosis of postural abnormalities in Parkinsonians. Our source code is publicly available at https://github.com/SJTUBME-QianLab/CausalGCN-PDPA.Abnormal posture is a common movement disorder in the progress of Parkinson's disease (PD), and this abnormality can increase the risk of falls or even disabilities. The conventional assessment approach depends on the judgment of well-trained experts via canonical scales. However, this approach requires extensive clinical expertise and is highly subjective. Considering the potential of quantitative susceptibility mapping (QSM) in PD diagnosis, this study explored the QSM-based method for the automated classification between PD patients with and without postural abnormalities. Nevertheless, a major challenge is that unstable non-causal features typically lead to less reliable performance. Therefore, we propose a causality-driven graph-convolutional-network framework based on multi-instance learning, where performance stability is enhanced through the invariant prediction principle and causal interventions. Specifically, we adopt an intervention strategy that combines a non-causal intervenor with causal prediction. A stability constraint is proposed to ensure robust integrated prediction under different interventions. Moreover, an intra-class homogeneity constraint is enforced for each individually-learned causality scoring module to promote the extraction of group-level general features, and hence achieve a balance between subject-specific and group-level features. The proposed method demonstrated promising performance through extensive experiments on a real clinical dataset. Also, the features extracted by our method coincide with those reported in previous medical studies on PD posture abnormalities. In general, our work provides a clinically-valuable approach for automated, objective, and reliable diagnosis of postural abnormalities in Parkinsonians. Our source code is publicly available at https://github.com/SJTUBME-QianLab/CausalGCN-PDPA.
Abnormal posture is a common movement disorder in the progress of Parkinson’s disease (PD), and this abnormality can increase the risk of falls or even disabilities. The conventional assessment approach depends on the judgment of well-trained experts via canonical scales. However, this approach requires extensive clinical expertise and is highly subjective. Considering the potential of quantitative susceptibility mapping (QSM) in PD diagnosis, this study explored the QSM-based method for the automated classification between PD patients with and without postural abnormalities. Nevertheless, a major challenge is that unstable non-causal features typically lead to less reliable performance. Therefore, we propose a causality-driven graph-convolutional-network framework based on multi-instance learning, where performance stability is enhanced through the invariant prediction principle and causal interventions. Specifically, we adopt an intervention strategy that combines a non-causal intervenor with causal prediction. A stability constraint is proposed to ensure robust integrated prediction under different interventions. Moreover, an intra-class homogeneity constraint is enforced for each individually-learned causality scoring module to promote the extraction of group-level general features, and hence achieve a balance between subject-specific and group-level features. The proposed method demonstrated promising performance through extensive experiments on a real clinical dataset. Also, the features extracted by our method coincide with those reported in previous medical studies on PD posture abnormalities. In general, our work provides a clinically-valuable approach for automated, objective, and reliable diagnosis of postural abnormalities in Parkinsonians. Our source code is publicly available at https://github.com/SJTUBME-QianLab/CausalGCN-PDPA .
Author Qian, Xiaohua
Zhang, Chencheng
Tang, Xinlu
Zhuang, Xiahai
Guo, Rui
Author_xml – sequence: 1
  givenname: Xinlu
  orcidid: 0009-0008-9469-8345
  surname: Tang
  fullname: Tang, Xinlu
  email: tangxl20@sjtu.edu.cn
  organization: Medical Image and Health Informatics Laboratory, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Rui
  orcidid: 0000-0001-7179-8097
  surname: Guo
  fullname: Guo, Rui
  email: graymm@sjtu.edu.cn
  organization: Medical Image and Health Informatics Laboratory, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Chencheng
  orcidid: 0000-0003-4472-4134
  surname: Zhang
  fullname: Zhang, Chencheng
  email: i@cczhang.org
  organization: Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 4
  givenname: Xiahai
  orcidid: 0000-0003-4351-4979
  surname: Zhuang
  fullname: Zhuang, Xiahai
  email: zxh@fudan.edu.cn
  organization: School of Data Science, Fudan University, Shanghai, China
– sequence: 5
  givenname: Xiaohua
  orcidid: 0000-0002-6548-6801
  surname: Qian
  fullname: Qian, Xiaohua
  email: xiaohua.qian@sjtu.edu.cn
  organization: Medical Image and Health Informatics Laboratory, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37581959$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFvEzEQRi1URNPCnQNClrhw2XRsx177GKXQViqlhyJxW9neWXC7sVN7t6j_nk0TEOqB00ij92Y08x2Rg5giEvKWwZwxMCc3Xy7mHLiYCwFS1PoFmTEpdcXl4vsBmQGvdQWg-CE5KuUWgC0kmFfkUNRSMyPNjLglXdmx2D4Mj9VpDg8Y6Vm2m590leJD6schpGh7eoXDr5TvaJcyvU5lGPPUXLqY8vrJpafB_oiphEJDpNc234VYUgw2ltfkZWf7gm_29Zh8-_zpZnVeXX49u1gtLysvFnqoupaDMN5aVSvBuIFW-5Z1TjJUzoMxpq1bCZ12iF4Jp1F6XtdtbRx2bOHEMfm4m7vJ6X7EMjTrUDz2vY2YxtJwLZlWRjIxoR-eobdpzNOdW8oo4EoxNVHv99To1tg2mxzWNj82f743AbADfE6lZOz-IgyabUDNFFCzDajZBzQp6pniw2C3Tx6yDf3_xHc7MSDiP3s400JJ8Rupmp3D
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_media_2024_103154
Cites_doi 10.1016/j.eswa.2022.119381
10.1371/journal.pone.0068910
10.1016/j.nicl.2019.102070
10.1109/TMI.2020.2973650
10.1016/j.neuroimage.2014.12.043
10.1016/j.cell.2021.01.015
10.3389/fnins.2021.731109
10.1109/BIBM52615.2021.9669648
10.1109/BIBM55620.2022.9995412
10.1109/TPAMI.2022.3209686
10.1109/TMI.2023.3236162
10.1002/mds.22340
10.1016/j.neuroimage.2019.116189
10.1093/brain/aww278
10.1007/s00415-022-11294-6
10.1016/j.neuroimage.2021.118048
10.1002/hbm.10062
10.1002/mrm.25358
10.1109/JBHI.2022.3155705
10.1016/j.media.2018.06.001
10.1109/TMI.2021.3077079
10.1016/j.neuroimage.2012.01.055
10.1002/jmri.21321
10.1038/s41467-020-17478-w
10.1017/CBO9780511803161
10.1016/S0197-4580(02)00065-9
10.1136/jnnp.2007.131045
10.14336/AD.2019.0929
10.1007/s00330-008-0927-8
10.1002/nbm.3569
10.1016/j.media.2021.102233
10.1002/mds.26294
10.1016/j.neuroimage.2016.02.079
10.1186/s12984-021-00959-4
10.1016/j.media.2017.10.005
10.1002/mds.26431
10.1111/rssb.12167
10.1016/S1474-4422(11)70067-9
10.1109/TMI.2010.2046908
10.1016/j.neuroimage.2010.11.088
10.1016/j.neuroimage.2010.10.070
10.1007/s00415-016-8174-4
10.1038/s41598-021-87411-8
10.1109/tnnls.2020.2978386
10.3389/fnagi.2019.00167
10.3390/s19051129
10.1371/journal.pone.0083767
10.1038/nrneurol.2017.178
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2023.3305378
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 3763
ExternalDocumentID 37581959
10_1109_TMI_2023_3305378
10218365
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62171273
  funderid: 10.13039/501100001809
– fundername: Special Fund for Transformation of Scientific and Technological Achievements of Inner Mongolia Autonomous Region of China
  grantid: 2021CG0052
– fundername: Med-Engineering Crossing Foundation from Shanghai Jiao Tong University
  grantid: YG2022QN007
  funderid: 10.13039/501100004921
– fundername: Natural Science Foundation of Shanghai
  grantid: 22ZR1432100
  funderid: 10.13039/100007219
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c348t-fd2039caa67631290d8cd1fb51e6bc0999d7d50f8beec63b8e5c277d79bef14b3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Fri Jul 11 15:00:53 EDT 2025
Mon Jun 30 02:34:41 EDT 2025
Wed Feb 19 01:58:34 EST 2025
Tue Jul 01 03:16:06 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Wed Aug 27 02:09:42 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-fd2039caa67631290d8cd1fb51e6bc0999d7d50f8beec63b8e5c277d79bef14b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4472-4134
0000-0002-6548-6801
0009-0008-9469-8345
0000-0001-7179-8097
0000-0003-4351-4979
PMID 37581959
PQID 2896026616
PQPubID 85460
PageCount 12
ParticipantIDs proquest_miscellaneous_2851869513
pubmed_primary_37581959
crossref_primary_10_1109_TMI_2023_3305378
proquest_journals_2896026616
ieee_primary_10218365
crossref_citationtrail_10_1109_TMI_2023_3305378
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
Cadene (ref39); 32
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Wu (ref38) 2022
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref34
  doi: 10.1016/j.eswa.2022.119381
– ident: ref46
  doi: 10.1371/journal.pone.0068910
– ident: ref11
  doi: 10.1016/j.nicl.2019.102070
– ident: ref31
  doi: 10.1109/TMI.2020.2973650
– ident: ref43
  doi: 10.1016/j.neuroimage.2014.12.043
– ident: ref21
  doi: 10.1016/j.cell.2021.01.015
– ident: ref12
  doi: 10.3389/fnins.2021.731109
– ident: ref35
  doi: 10.1109/BIBM52615.2021.9669648
– ident: ref36
  doi: 10.1109/BIBM55620.2022.9995412
– ident: ref28
  doi: 10.1109/TPAMI.2022.3209686
– ident: ref37
  doi: 10.1109/TMI.2023.3236162
– ident: ref4
  doi: 10.1002/mds.22340
– ident: ref45
  doi: 10.1016/j.neuroimage.2019.116189
– ident: ref13
  doi: 10.1093/brain/aww278
– ident: ref50
  doi: 10.1007/s00415-022-11294-6
– ident: ref23
  doi: 10.1016/j.neuroimage.2021.118048
– ident: ref41
  doi: 10.1002/hbm.10062
– ident: ref9
  doi: 10.1002/mrm.25358
– ident: ref15
  doi: 10.1109/JBHI.2022.3155705
– volume: 32
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref39
  article-title: RUBi: Reducing unimodal biases for visual question answering
– ident: ref29
  doi: 10.1016/j.media.2018.06.001
– ident: ref16
  doi: 10.1109/TMI.2021.3077079
– ident: ref17
  doi: 10.1016/j.neuroimage.2012.01.055
– ident: ref48
  doi: 10.1002/jmri.21321
– ident: ref33
  doi: 10.1038/s41467-020-17478-w
– ident: ref25
  doi: 10.1017/CBO9780511803161
– ident: ref14
  doi: 10.1016/S0197-4580(02)00065-9
– ident: ref1
  doi: 10.1136/jnnp.2007.131045
– ident: ref5
  doi: 10.14336/AD.2019.0929
– ident: ref7
  doi: 10.1007/s00330-008-0927-8
– ident: ref8
  doi: 10.1002/nbm.3569
– ident: ref30
  doi: 10.1016/j.media.2021.102233
– ident: ref6
  doi: 10.1002/mds.26294
– ident: ref20
  doi: 10.1016/j.neuroimage.2016.02.079
– ident: ref27
  doi: 10.1186/s12984-021-00959-4
– ident: ref18
  doi: 10.1016/j.media.2017.10.005
– ident: ref22
  doi: 10.1002/mds.26431
– ident: ref24
  doi: 10.1111/rssb.12167
– ident: ref2
  doi: 10.1016/S1474-4422(11)70067-9
– ident: ref44
  doi: 10.1109/TMI.2010.2046908
– ident: ref40
  doi: 10.1016/j.neuroimage.2010.11.088
– ident: ref42
  doi: 10.1016/j.neuroimage.2010.10.070
– ident: ref49
  doi: 10.1007/s00415-016-8174-4
– ident: ref32
  doi: 10.1038/s41598-021-87411-8
– ident: ref19
  doi: 10.1109/tnnls.2020.2978386
– year: 2022
  ident: ref38
  article-title: Discovering invariant rationales for graph neural networks
  publication-title: arXiv:2201.12872
– ident: ref10
  doi: 10.3389/fnagi.2019.00167
– ident: ref26
  doi: 10.3390/s19051129
– ident: ref47
  doi: 10.1371/journal.pone.0083767
– ident: ref3
  doi: 10.1038/nrneurol.2017.178
SSID ssj0014509
Score 2.4466693
Snippet Abnormal posture is a common movement disorder in the progress of Parkinson's disease (PD), and this abnormality can increase the risk of falls or even...
Abnormal posture is a common movement disorder in the progress of Parkinson’s disease (PD), and this abnormality can increase the risk of falls or even...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3752
SubjectTerms Abnormalities
Artificial neural networks
Automation
causal inference
causal intervention
Causality
Diagnosis
Diseases
Feature extraction
graph convolutional network
Homogeneity
Humans
Iron
Magnetic resonance imaging
Movement disorders
Neurodegenerative diseases
Parkinson Disease - diagnostic imaging
Parkinson's disease
postural abnormality
Posture
Predictions
Reliability
Source code
Stability
Stability analysis
Task analysis
Title A Causality-Driven Graph Convolutional Network for Postural Abnormality Diagnosis in Parkinsonians
URI https://ieeexplore.ieee.org/document/10218365
https://www.ncbi.nlm.nih.gov/pubmed/37581959
https://www.proquest.com/docview/2896026616
https://www.proquest.com/docview/2851869513
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ug-jB96O-iODFQ7tt0yTtcVnfsHtS8Faax4IoXXG3Hvz1ZpJ2UUHxVmiSpsxkMsnMfB_AWaolpYrr0Ah7RMkKI0JZSB5WmqcyV7lQKVYjD0f85iG7e2SPbbG6q4UxxrjkMxPho4vl64lq8Kqsl7gNnbNFWLR65ou15iGDjPl8jhQhY2OedjHJuOjdD28jpAmP7OGdUYEcfdT6yYir8m07cvwqv7uabsu5WodRN1mfafIcNTMZqY8fOI7__psNWGudT9L32rIJC6begtUvkIRbsDxsg-3bIPtkUDVT56iHF29oFsk14luTwaR-b1XWDjfymeTEur8EuX8RyIP0ZY3eMPYlFz6d72lKnmqCZdau4szq5XQHHq4u7wc3YUvJECqa5bNwrNOYFqqquLVLeIWF5EfJWLLEcKnQ29RCs3icS2MUpzI3TKVCaFFIM04ySXdhqZ7UZh8IFvdZc6xkVeRWdohCI6w6ZcLaCF1JFkCvk0ypWrxypM14Kd25JS5KK9YSxVq2Yg3gfN7j1WN1_NF2ByXypZ0XRgBHnfTLdjVPS3soRaYunvAATuev7TrE4EpVm0mDbRiye7GEBrDntWY-eKdsB7989BBWcG4-S-YIlmZvjTm2vs5Mnjgd_wTbTPgL
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB61VGrhQCnPAKVG4sIh2SSO7eS4WkqXlt3TInGL4sdKK1AWsRsO_Ho8drKilai4RYrtOJrxeOyZ-T6As1RLShXXoRH2iJIVRoSykDysNE9lrnKhUqxGHo358Cb7fctu22J1VwtjjHHJZybCRxfL13PV4FVZL3EbOmcf4ZPd-DPmy7VWQYOM-YyOFEFjY552Ucm46E1GVxEShUf2-M6oQJY-aj1lRFb5a0NyDCtvO5tu07n8CuNuuj7X5C5qljJSz_8gOb77f7Zgs3U_Sd_ryzf4YOpt2HgFSrgNn0dtuH0HZJ8MqmbhXPXw4hENI_mFCNdkMK-fWqW1w419LjmxDjBB9l-E8iB9WaM_jH3JhU_omy3IrCZYaO1qzqxmLnbh5vLnZDAMW1KGUNEsX4ZTnca0UFXFrWXCSyykP0qmkiWGS4X-phaaxdNcGqM4lblhKhVCi0KaaZJJugdr9bw2B0CwvM8aZCWrIreyQxwaYRUqE9ZK6EqyAHqdZErVIpYjccZ96U4ucVFasZYo1rIVawDnqx4PHq3jP213USKv2nlhBHDcSb9s1_OitMdS5OriCQ_gdPXarkQMr1S1mTfYhiG_F0toAPtea1aDd8p2-MZHf8CX4WR0XV5fjf8cwTrO0-fMHMPa8rEx363ns5QnTt9fAP3A-1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Causality-Driven+Graph+Convolutional+Network+for+Postural+Abnormality+Diagnosis+in+Parkinsonians&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Tang%2C+Xinlu&rft.au=Guo%2C+Rui&rft.au=Zhang%2C+Chencheng&rft.au=Zhuang%2C+Xiahai&rft.date=2023-12-01&rft.issn=1558-254X&rft.eissn=1558-254X&rft.volume=42&rft.issue=12&rft.spage=3752&rft_id=info:doi/10.1109%2FTMI.2023.3305378&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon