A Causality-Driven Graph Convolutional Network for Postural Abnormality Diagnosis in Parkinsonians

Abnormal posture is a common movement disorder in the progress of Parkinson's disease (PD), and this abnormality can increase the risk of falls or even disabilities. The conventional assessment approach depends on the judgment of well-trained experts via canonical scales. However, this approach...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 42; no. 12; pp. 3752 - 3763
Main Authors Tang, Xinlu, Guo, Rui, Zhang, Chencheng, Zhuang, Xiahai, Qian, Xiaohua
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2023.3305378

Cover

More Information
Summary:Abnormal posture is a common movement disorder in the progress of Parkinson's disease (PD), and this abnormality can increase the risk of falls or even disabilities. The conventional assessment approach depends on the judgment of well-trained experts via canonical scales. However, this approach requires extensive clinical expertise and is highly subjective. Considering the potential of quantitative susceptibility mapping (QSM) in PD diagnosis, this study explored the QSM-based method for the automated classification between PD patients with and without postural abnormalities. Nevertheless, a major challenge is that unstable non-causal features typically lead to less reliable performance. Therefore, we propose a causality-driven graph-convolutional-network framework based on multi-instance learning, where performance stability is enhanced through the invariant prediction principle and causal interventions. Specifically, we adopt an intervention strategy that combines a non-causal intervenor with causal prediction. A stability constraint is proposed to ensure robust integrated prediction under different interventions. Moreover, an intra-class homogeneity constraint is enforced for each individually-learned causality scoring module to promote the extraction of group-level general features, and hence achieve a balance between subject-specific and group-level features. The proposed method demonstrated promising performance through extensive experiments on a real clinical dataset. Also, the features extracted by our method coincide with those reported in previous medical studies on PD posture abnormalities. In general, our work provides a clinically-valuable approach for automated, objective, and reliable diagnosis of postural abnormalities in Parkinsonians. Our source code is publicly available at https://github.com/SJTUBME-QianLab/CausalGCN-PDPA .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2023.3305378