Influence of coating type, colour, and deployment timing on biofouling by native and non-native species in a marine renewable energy context
Biofouling on marine renewable energy devices presents engineering challenges for this developing sector, and has implications for the spread of marine non-native species (NNS) in coastal waters. This is particularly true at sites with abundant energy resource, little existing infrastructure, and fe...
Saved in:
Published in | Biofouling (Chur, Switzerland) Vol. 38; no. 7; pp. 729 - 745 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
09.08.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Biofouling on marine renewable energy devices presents engineering challenges for this developing sector, and has implications for the spread of marine non-native species (NNS) in coastal waters. This is particularly true at sites with abundant energy resource, little existing infrastructure, and few established NNS. Device coatings, such as antifouling paints, could reduce the risk of NNS spread. Settlement on coatings of various types and colours, representing those likely to be used on renewable energy devices, was assessed in the Orkney Islands, northern Scotland. Assemblage composition, but not overall biofouling cover, varied initially among different coloured surfaces, although differences decreased over time. Different coating types (an anticorrosive paint, a biocidal paint and a fouling-release coating) differed in biofouling abundance and composition for the full duration of the experiment. NNS were mostly, but not completely, absent from antifouling surfaces. These results can help informing antifouling strategies for the marine renewable energy industry. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0892-7014 1029-2454 |
DOI: | 10.1080/08927014.2022.2121209 |