Hybridizing two linear relaxation techniques in interval-based solvers
In deterministic global optimization, techniques for linear relaxation of a non-convex program are used in the lower bound calculation phase. To achieve this phase, most deterministic global optimization codes use reformulation-linearization techniques. However, there exist also two interval-based p...
Saved in:
Published in | Journal of global optimization Vol. 91; no. 3; pp. 437 - 456 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2025
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In deterministic global optimization, techniques for linear relaxation of a non-convex program are used in the lower bound calculation phase. To achieve this phase, most deterministic global optimization codes use reformulation-linearization techniques. However, there exist also two interval-based polyhedral relaxation techniques which produce reliable bounds without adding new auxiliary variables, and which can take into account mathematical operations and most transcendental functions: (i) the affine relaxation technique, used in the IBBA code, based on affine forms and affine arithmetic, and (ii) the extremal Taylor technique, used in the Ibex-Opt code, which is based on a specific interval-based Taylor form. In this paper, we describe how these two interval-based linear relaxation techniques can be hybridized. These two approaches appear to be complementary, and such a hybrid method performs well on a representative sample of constrained global optimization instances. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1007/s10898-024-01449-2 |