Viscoelastic properties of colloidal systems with attractive solid particles at low concentration: A review, new results and interpretations
This paper concerns the viscoelastic properties and the resulting structure of colloidal systems with short-range attractions in the regime where the volume fraction f is small. Unlike the high ϕ regime, which is well understood in terms of mode-coupling theory (MCT), the low ϕ regime is still the s...
Saved in:
Published in | Advances in colloid and interface science Vol. 335; p. 103335 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper concerns the viscoelastic properties and the resulting structure of colloidal systems with short-range attractions in the regime where the volume fraction f is small. Unlike the high ϕ regime, which is well understood in terms of mode-coupling theory (MCT), the low ϕ regime is still the subject of a debate based on different concepts such as percolation, diffusion-limited colloidal aggregation (DLCA), jamming, or cluster mode-coupling approach. Prior to the analysis of three examples of attractive systems at low ϕ values, a summary of concepts relevant to understanding the formation and properties of such attractive particles is discussed in the present study. Afterwards, we re-analyze the behaviour at a low ϕ of i) suspensions of carbon black (CB) particles, ii) suspensions of poly(methyl methacrylate) (PMMA) hard spheres with a depletion attraction induced by the addition of polystyrene (PS), and iii) suspensions of amino acid organogelator molecules which form rod-like objects. The rheological properties of these systems have been studied in detail and their response has been interpreted as being due either to a solid network discussed in relation to the jamming state diagram or to a suspension formed by jamming of clusters. Our analysis shows that these three systems are in fact cluster fluids and that their solid-like response corresponds to a change in their viscoelastic response, the elastic component G' becoming greater than the viscous component G" at low frequencies. Due to the presence of weak interparticle interactions in the tens range from 1 to 15 kBT, a liquid-like state is reversibly achieved at high frequencies, as indicated by the crossover of G' and G" as a function of frequency for a given concentration. Moreover, all these attractive particle systems at low ϕ show for both moduli a master curve which characterizes these cluster fluids and allows for the classification of these attractive particle systems.
[Display omitted]
•Viscoelastic properties and structure determination of colloidal systems with attractive particles at low concentrations ϕ.•Demonstration that these systems are cluster fluids together with a master curve showing a crossover between G' and G".•Review of the liquid-to-solid transition, i.e., gelation, aggregation, jamming, and cluster mode-coupling approach.•Description of the models for describing gelation – critical gel; DLCA, RDLCA and RCLA; jamming processes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 0001-8686 1873-3727 1873-3727 |
DOI: | 10.1016/j.cis.2024.103335 |