Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm
A common complaint of the hearing impaired is the inability to understand speech in noisy environments even with their hearing assistive devices. Only a few single-channel algorithms have significantly improved speech intelligibility in noise for hearing-impaired listeners. The current study introdu...
Saved in:
Published in | The Journal of the Acoustical Society of America Vol. 132; no. 3; pp. 1718 - 1731 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville, NY
Acoustical Society of America
01.09.2012
American Institute of Physics |
Subjects | |
Online Access | Get full text |
ISSN | 0001-4966 1520-8524 1520-8524 |
DOI | 10.1121/1.4739441 |
Cover
Summary: | A common complaint of the hearing impaired is the inability to understand speech in noisy environments even with their hearing assistive devices. Only a few single-channel algorithms have significantly improved speech intelligibility in noise for hearing-impaired listeners. The current study introduces a cochlear noise reduction algorithm. It is based on a cochlear representation of acoustic signals and real-time derivation of a binary speech mask. The contribution of the algorithm for enhancing word recognition in noise was evaluated on a group of 42 normal-hearing subjects, 35 hearing-aid users, 8 cochlear implant recipients, and 14 participants with bimodal devices. Recognition scores of Hebrew monosyllabic words embedded in Gaussian noise at several signal-to-noise ratios (SNRs) were obtained with processed and unprocessed signals. The algorithm was not effective among the normal-hearing participants. However, it yielded a significant improvement in some of the hearing-impaired subjects under different listening conditions. Its most impressive benefit appeared among cochlear implant recipients. More than 20% improvement in recognition score of noisy words was obtained by 12, 16, and 26 hearing-impaired at SNR of 30, 24, and 18 dB, respectively. The algorithm has a potential to improve speech intelligibility in background noise, yet further research is required to improve its performances. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0001-4966 1520-8524 1520-8524 |
DOI: | 10.1121/1.4739441 |