Multi-Modal Tumor Segmentation with Deformable Aggregation and Uncertain Region Inpainting

Multi-modal tumor segmentation exploits complementary information from different modalities to help recognize tumor regions. Known multi-modal segmentation methods mainly have deficiencies in two aspects: First, the adopted multi-modal fusion strategies are built upon well-aligned input images, whic...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 42; no. 10; p. 1
Main Authors Zhang, Yue, Peng, Chengtao, Tong, Ruofeng, Lin, Lanfen, Chen, Yen-Wei, Chen, Qingqing, Hu, Hongjie, Kevin Zhou, S.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multi-modal tumor segmentation exploits complementary information from different modalities to help recognize tumor regions. Known multi-modal segmentation methods mainly have deficiencies in two aspects: First, the adopted multi-modal fusion strategies are built upon well-aligned input images, which are vulnerable to spatial misalignment between modalities (caused by respiratory motions, different scanning parameters, registration errors, etc). Second, the performance of known methods remains subject to the uncertainty of segmentation, which is particularly acute in tumor boundary regions. To tackle these issues, in this paper, we propose a novel multi-modal tumor segmentation method with deformable feature fusion and uncertain region refinement. Concretely, we introduce a deformable aggregation module, which integrates feature alignment and feature aggregation in an ensemble, to reduce inter-modality misalignment and make full use of cross-modal information. Moreover, we devise an uncertain region inpainting module to refine uncertain pixels using neighboring discriminative features. Experiments on two clinical multi-modal tumor datasets demonstrate that our method achieves promising tumor segmentation results and outperforms state-of-the-art methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2023.3275592