MugNet: Deep learning for hyperspectral image classification using limited samples

In recent years, deep learning based methods have attracted broad attention in the field of hyperspectral image classification. However, due to the massive parameters and the complex network structure, deep learning methods may not perform well when only few training samples are available. In this p...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 145; pp. 108 - 119
Main Authors Pan, Bin, Shi, Zhenwei, Xu, Xia
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In recent years, deep learning based methods have attracted broad attention in the field of hyperspectral image classification. However, due to the massive parameters and the complex network structure, deep learning methods may not perform well when only few training samples are available. In this paper, we propose a small-scale data based method, multi-grained network (MugNet), to explore the application of deep learning approaches in hyperspectral image classification. MugNet could be considered as a simplified deep learning model which mainly targets at limited samples based hyperspectral image classification. Three novel strategies are proposed to construct MugNet. First, the spectral relationship among different bands, as well as the spatial correlation within neighboring pixels, are both utilized via a multi-grained scanning approach. The proposed multi-grained scanning strategy could not only extract the joint spectral-spatial information, but also combine different grains’ spectral and spatial relationship. Second, because there are abundant unlabeled pixels available in hyperspectral images, we take full advantage of these samples, and adopt a semi-supervised manner in the process of generating convolution kernels. At last, the MugNet is built upon the basis of a very simple network which does not include many hyperparameters for tuning. The performance of MugNet is evaluated on a popular and two challenging data sets, and comparison experiments with several state-of-the-art hyperspectral image classification methods are revealed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0924-2716
1872-8235
DOI:10.1016/j.isprsjprs.2017.11.003