Central role of ubiquitin-specific protease 8 in leptin signaling pathway in pulmonary arterial hypertension
Leptin receptor (ObR-b) is overexpressed in pulmonary artery smooth muscle cells (PA-SMCs) from patients with pulmonary arterial hypertension (PAH) and is implicated in both mechanisms that contribute to pulmonary vascular remodeling: hyperproliferation and inflammation. Our aim was to investigate t...
Saved in:
Published in | The Journal of heart and lung transplantation Vol. 43; no. 1; pp. 120 - 133 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Leptin receptor (ObR-b) is overexpressed in pulmonary artery smooth muscle cells (PA-SMCs) from patients with pulmonary arterial hypertension (PAH) and is implicated in both mechanisms that contribute to pulmonary vascular remodeling: hyperproliferation and inflammation. Our aim was to investigate the role of ubiquitin-specific peptidase 8 (USP8) in ObR-b overexpression in PAH.
We performed in situ and in vitro experiments in human lung specimens and isolated PA-SMCs combined with 2 different in vivo models in rodents and we generated a mouse with an inducible USP8 deletion specifically in smooth muscles.
Our results showed an upregulation of USP8 in the smooth muscle layer of distal pulmonary arteries from patients with PAH, and upregulation of USP8 expression in PAH PA-SMCs, compared to controls. USP8 inhibition in PAH PA-SMCs significantly blocked both ObR-b protein expression level at the cell surface as well as ObR-b-dependant intracellular signaling pathway as shown by a significant decrease in pSTAT3 expression. USP8 was required for ObR-b activation in PA-SMCs and its inhibition prevented Ob-mediated cell proliferation through STAT3 pathway. USP8 inhibition by the chemical inhibitor DUBs-IN-2 protected against the development of experimental PH in the 2 established experimental models of PH. Targeting USP8 specifically in smooth muscle cells in a transgenic mouse model also protected against the development of experimental PH.
Our findings highlight the role of USP8 in ObR-b overexpression and pulmonary vascular remodeling in PAH. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1053-2498 1557-3117 |
DOI: | 10.1016/j.healun.2023.09.003 |