An experimental study on seepage behavior of sandstone material with different gas pressures
The seepage evolution characteristic of brittle rock materials is very significant for the stability and safety of rock engineering. In this research, a series of conventional triaxial compression and gas seepage tests were carded out on sandstone specimens with a rock mechanics servo-controlled tes...
Saved in:
Published in | Acta mechanica Sinica Vol. 31; no. 6; pp. 837 - 844 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
01.12.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The seepage evolution characteristic of brittle rock materials is very significant for the stability and safety of rock engineering. In this research, a series of conventional triaxial compression and gas seepage tests were carded out on sandstone specimens with a rock mechanics servo-controlled testing system. Based on the experimental results, the relationship between permeability and deformation is firstly analyzed in detail. The results show that the permeabilityaxial strain curve can be divided into the following five phases: the phase of micro-defects closure, the phase of linear elastic deformation, the phase of nonlinear deformation, the phase of post-peak stress softening and the phase of residual strength. The seepage evolution characteristic is also closely correlated with the volumetric deformation according to the relationship between permeability and volumetric strain. It is found that the gas seepage pressure has a great effect on the permeability evolution, i.e. permeability coefficients increase with increasing gas seepage pressures. Finally, the influence of gas seepage pressures on the failure behavior of brittle sandstone specimens is discussed. |
---|---|
Bibliography: | The seepage evolution characteristic of brittle rock materials is very significant for the stability and safety of rock engineering. In this research, a series of conventional triaxial compression and gas seepage tests were carded out on sandstone specimens with a rock mechanics servo-controlled testing system. Based on the experimental results, the relationship between permeability and deformation is firstly analyzed in detail. The results show that the permeabilityaxial strain curve can be divided into the following five phases: the phase of micro-defects closure, the phase of linear elastic deformation, the phase of nonlinear deformation, the phase of post-peak stress softening and the phase of residual strength. The seepage evolution characteristic is also closely correlated with the volumetric deformation according to the relationship between permeability and volumetric strain. It is found that the gas seepage pressure has a great effect on the permeability evolution, i.e. permeability coefficients increase with increasing gas seepage pressures. Finally, the influence of gas seepage pressures on the failure behavior of brittle sandstone specimens is discussed. Rock mechanics · Sandstone · Gas seepage ·Volumetric deformation · Permeability 11-2063/O3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0567-7718 1614-3116 |
DOI: | 10.1007/s10409-015-0432-7 |