Passive Elastography for Clinical HIFU Lesion Detection

High-intensity Focused Ultrasound (HIFU) is a promising treatment modality for a wide range of pathologies including prostate cancer. However, the lack of a reliable ultrasound-based monitoring technique limits its clinical use. Ultrasound currently provides real-time HIFU planning, but its use for...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 43; no. 4; pp. 1594 - 1604
Main Authors Payen, Thomas, Crouzet, Sebastien, Guillen, Nicolas, Chen, Yao, Chapelon, Jean-Yves, Lafon, Cyril, Catheline, Stefan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High-intensity Focused Ultrasound (HIFU) is a promising treatment modality for a wide range of pathologies including prostate cancer. However, the lack of a reliable ultrasound-based monitoring technique limits its clinical use. Ultrasound currently provides real-time HIFU planning, but its use for monitoring is usually limited to detecting the backscatter increase resulting from chaotic bubble appearance. HIFU has been shown to generate stiffening in various tissues, so elastography is an interesting lead for ablation monitoring. However, the standard techniques usually require the generation of a controlled push which can be problematic in deeper organs. Passive elastography offers a potential alternative as it uses the physiological wave field to estimate the elasticity in tissues and not an external perturbation. This technique was adapted to process B-mode images acquired with a clinical system. It was first shown to faithfully assess elasticity in calibrated phantoms. The technique was then implemented on the Focal One® clinical system to evaluate its capacity to detect HIFU lesions in vitro (CNR = 9.2 dB) showing its independence regarding the bubbles resulting from HIFU and in vivo where the physiological wave field was successfully used to detect and delineate lesions of different sizes in porcine liver. Finally, the technique was performed for the very first time in four prostate cancer patients showing strong variation in elasticity before and after HIFU treatment (average variation of <inline-formula> <tex-math notation="LaTeX">33.0 \, \pm \, 16.0 \% </tex-math></inline-formula>). Passive elastography has shown evidence of its potential to monitor HIFU treatment and thus help spread its use.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2023.3344182