Performance Comparison of Downlink Multiuser MIMO-OFDMA and MIMO-MC-CDMA with Transmit Side Information - Multi-Cell Analysis

Orthogonal frequency division multiple access (OFDMA) and multicarrier code division multiple access (MC-CDMA) have recently drawn much attention for being potential candidates of future generation cellular systems. In single-cell scenario, while MC-CDMA is good at achieving frequency diversity when...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 6; no. 6; pp. 2193 - 2203
Main Authors Chan, P.W.C., Lo, E.S., Lau, V.K.N., Cheng, R.S., Letaief, K.B., Murch, R.D., Wai Ho Mow
Format Journal Article
LanguageEnglish
Published Piscataway, NJ IEEE 01.06.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Orthogonal frequency division multiple access (OFDMA) and multicarrier code division multiple access (MC-CDMA) have recently drawn much attention for being potential candidates of future generation cellular systems. In single-cell scenario, while MC-CDMA is good at achieving frequency diversity when there is no channel state information available at the transmit side (CSIT), OFDMA achieves higher capacity than MC-CDMA due to its finer resolution in exploiting multiuser diversity with CSIT. Whether multiple-input-multiple-output (MIMO) MC-CDMA or OFDMA is a better option in multi-cell system remains unjustified in the literature. In this paper, we study the ergodic capacity and the goodput of MIMO-MC-CDMA and MIMO-OFDMA downlink systems with CSIT in multi-cell scenario assuming that the base station has the knowledge of the average inter-cell interference level only. Several types of users modeling different interference patterns are considered: (I) high data rate delay-insensitive users, (II) high data rate delay-sensitive .users, and (III) voice users (low data rate and bursty). Optimal resource allocation algorithms are used to compute the capacities of the systems, while a simple heuristic is used to obtain the achievable goodputs for both systems. The effects of path loss, number of antennas and different user types are studied and insightful results are obtained. We find that OFDMA has a higher system goodput for both Type I and Type II high data rate users, while MC-CDMA has a higher goodput for Type III users. Compared to MC-CDMA, the goodput of an OFDMA system is more sensitive to the activity factor of the voice users and suffers from noticeable loss. This demonstrates the superiority of the two systems in different practical situations.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2007.05518