Failure analysis of thermoplastic composite pipe (TCP) under combined pressure, tension and thermal gradient for an offshore riser application

Useful characteristics of fibre-reinforced thermoplastics, including high specific strengths and moduli and excellent corrosion resistance, make them ideal candidates for offshore riser pipe applications. When in operation, risers are subjected to combined mechanical and thermal loading. In the pres...

Full description

Saved in:
Bibliographic Details
Published inThe International journal of pressure vessels and piping Vol. 178; p. 103998
Main Authors Hastie, James C., Kashtalyan, Maria, Guz, Igor A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Useful characteristics of fibre-reinforced thermoplastics, including high specific strengths and moduli and excellent corrosion resistance, make them ideal candidates for offshore riser pipe applications. When in operation, risers are subjected to combined mechanical and thermal loading. In the present paper, a 3D finite element (FE) model is used to analyse stress state in a section of thermoplastic composite pipe (TCP), consisting of a fibre-reinforced thermoplastic laminate fully bonded between inner and outer thermoplastic liners, under conditions illustrative of a deepwater riser application. The effects of varying combinations of pressure and thermal differentials on the distribution of stress-based failure coefficient are examined. Failure responses under different axial tensions at low/high pressures and temperatures are assessed for configurations with different laminate ply stacking sequences. Temperature-dependent material properties are considered in the thermomechanical analysis.
ISSN:0308-0161
1879-3541
DOI:10.1016/j.ijpvp.2019.103998