Adaptive tracking of nonlinear systems with non-symmetric dead-zone input

Quite successfully adaptive control strategies have been applied to uncertain dynamical systems subject to dead-zone nonlinearities. However, adaptive tracking of systems with non-symmetric dead-zone characteristics has not been fully discussed with minimal knowledge of the dead-zone parameters. It...

Full description

Saved in:
Bibliographic Details
Published inAutomatica (Oxford) Vol. 43; no. 3; pp. 522 - 530
Main Authors Ibrir, Salim, Xie, Wen Fang, Su, Chun-Yi
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.03.2007
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Quite successfully adaptive control strategies have been applied to uncertain dynamical systems subject to dead-zone nonlinearities. However, adaptive tracking of systems with non-symmetric dead-zone characteristics has not been fully discussed with minimal knowledge of the dead-zone parameters. It is shown that the controlled system preceded by a non-symmetric dead-zone input can be represented as an uncertain nonlinear system subject to a linear input with time-varying input coefficient. To cope with this problem, a new adaptive compensation algorithm is employed without constructing the dead-zone inverse. The proposed adaptive scheme requires only the information of bounds of the dead-zone slopes and treats the time-varying input coefficient as a system uncertainty. The new control scheme ensures bounded-error trajectory tracking and assures the boundedness of all the signals in the adaptive closed loop. By appropriate selections of the controller parameters, we show that the smoothness of the controller does not affect the accuracy of trajectory tracking control. A numerical example is included to show the effectiveness of the theoretical results.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2006.09.022