Finite element simulation of complex interfacial segregation phenomena in dilute alloys
Segregation of trace elements on a surface, at grain boundaries or more generally in any interface can have important consequences: adhesion of thin films, catalytic activity, embrittlement of steels by P or of nickel alloys by S, reinforcement of nickel alloys by B, etc. Segregation kinetics can be...
Saved in:
Published in | Journal of materials science Vol. 44; no. 17; pp. 4604 - 4612 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2009
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Segregation of trace elements on a surface, at grain boundaries or more generally in any interface can have important consequences: adhesion of thin films, catalytic activity, embrittlement of steels by P or of nickel alloys by S, reinforcement of nickel alloys by B, etc. Segregation kinetics can be simulated by a finite element (FE) approach, by implementing the Darken–Du Plessis equation at the interface and Fick’s diffusion laws in the bulk. It is then possible to simulate segregation kinetics in non-isothermal conditions, and to couple segregation and macroscopic heat transfer calculations. A previously developed model is here adapted to the case of complex interfacial segregation phenomena: (i) segregation of a single species with a solute–solute or solute–solvent interaction, (ii) co-segregation of two species with a site competition in the interface, and (iii) segregation of a single species at an interface between two phases. Results are compared with available experimental data. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-009-3702-6 |