Artificial intelligence in drug discovery: applications and techniques
Abstract Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug discovery applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
17.01.2022
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
Artificial intelligence (AI) has been transforming the practice of drug discovery in the past decade. Various AI techniques have been used in many drug discovery applications, such as virtual screening and drug design. In this survey, we first give an overview on drug discovery and discuss related applications, which can be reduced to two major tasks, i.e. molecular property prediction and molecule generation. We then present common data resources, molecule representations and benchmark platforms. As a major part of the survey, AI techniques are dissected into model architectures and learning paradigms. To reflect the technical development of AI in drug discovery over the years, the surveyed works are organized chronologically. We expect that this survey provides a comprehensive review on AI in drug discovery. We also provide a GitHub repository with a collection of papers (and codes, if applicable) as a learning resource, which is regularly updated. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 1467-5463 1477-4054 |
DOI: | 10.1093/bib/bbab430 |