Disease spreading modeling and analysis: a survey
Abstract Motivation The control of the diffusion of diseases is a critical subject of a broad research area, which involves both clinical and political aspects. It makes wide use of computational tools, such as ordinary differential equations, stochastic simulation frameworks and graph theory, and i...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
18.07.2022
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract
Motivation
The control of the diffusion of diseases is a critical subject of a broad research area, which involves both clinical and political aspects. It makes wide use of computational tools, such as ordinary differential equations, stochastic simulation frameworks and graph theory, and interaction data, from molecular to social granularity levels, to model the ways diseases arise and spread. The coronavirus disease 2019 (COVID-19) is a perfect testbench example to show how these models may help avoid severe lockdown by suggesting, for instance, the best strategies of vaccine prioritization.
Results
Here, we focus on and discuss some graph-based epidemiological models and show how their use may significantly improve the disease spreading control. We offer some examples related to the recent COVID-19 pandemic and discuss how to generalize them to other diseases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1467-5463 1477-4054 1477-4054 |
DOI: | 10.1093/bib/bbac230 |