Mitochondria Support Inositol 1,4,5-Trisphosphate-mediated Ca2+ Waves in Cultured Oligodendrocytes

We have examined the spatial and temporal nature of Ca2+ signals activated via the phosphoinositide pathway in oligodendrocytes and the cellular specializations underlying oligodendrocyte Ca2+ response characteristics. Cultured cortical oligodendrocytes were incubated with fluo 3 or fura 2, and digi...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 271; no. 52; pp. 33493 - 33501
Main Authors Simpson, Peter B., Russell, James T.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.12.1996
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have examined the spatial and temporal nature of Ca2+ signals activated via the phosphoinositide pathway in oligodendrocytes and the cellular specializations underlying oligodendrocyte Ca2+ response characteristics. Cultured cortical oligodendrocytes were incubated with fluo 3 or fura 2, and digital video fluorescence microscopy was used to study the effect of methacholine on [Ca2+]i. Single peaks, oscillations, and steady-state plateau [Ca2+]i elevations were evoked by increasing agonist concentration. The peaks and oscillations were found to be Ca2+ wave fronts, which propagate via distinct amplification regions in the cell where the kinetics of Ca2+ release (amplitude and rate of rise of response) are elevated. Staining with 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolecarbocyanine iodide (JC-1) and 3,3′-dihexyloxacarbocyanine iodide revealed that mitochondria are found in groups of three or more in oligodendrocyte processes and that the groups are distributed with considerable distance separating them. Cross-correlation analysis showed a high degree of correlation between sites where mitochondria are present and peaks in the amplitude and rate of rise of the Ca2+ response. Intramitochondrial Ca2+ concentration, measured using rhod 2, increased upon treatment with methacholine. Methacholine also evoked a rapid change in mitochondrial membrane potential as measured by the J-aggregate fluorescence of JC-1. Pretreatment with the mitochondrial inhibitors carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (1 μM, 2 min) or antimycin (2 μg/ml, 2 min) altered the methacholine-evoked Ca2+ response in most cells studied, responses being either markedly potentiated or inhibited. The results of this study demonstrate that stimulation of phosphoinositide-coupled muscarinic acetylcholinoceptors activates propagating Ca2+ wave fronts in oligodendrocytes and that the characteristics of these waves are dependent on mitochondrial location and function.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.271.52.33493