DFT/CC investigation of physical adsorption on a graphite (0001) surface

The physical adsorption of molecules (C(2)H(2), C(2)H(4), C(2)H(6), C(6)H(6), CH(4), H(2), H(2)O, N(2), NH(3), CO, CO(2), Ar) on a graphite substrate has been investigated at the DFT/CC level of theory. The calculated DFT/CC interaction energies were compared with the available experimental data at...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 12; no. 24; pp. 6438 - 6444
Main Authors Rubes, Miroslav, Kysilka, Jirí, Nachtigall, Petr, Bludský, Ota
Format Journal Article
LanguageEnglish
Published England 01.01.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The physical adsorption of molecules (C(2)H(2), C(2)H(4), C(2)H(6), C(6)H(6), CH(4), H(2), H(2)O, N(2), NH(3), CO, CO(2), Ar) on a graphite substrate has been investigated at the DFT/CC level of theory. The calculated DFT/CC interaction energies were compared with the available experimental data at the zero coverage limit. The differences between the DFT/CC results and experiment are within a few tenths of kJ mol(-1) for the most accurate experimental estimates (Ar, H(2), N(2), CH(4)) and within 1-2 kJ mol(-1) for the other systems (C(2)H(2), C(2)H(4), C(2)H(6), C(6)H(6), CO, CO(2)). For water-graphite and ammonia-graphite complexes, DFT/CC predicts interaction energies of 13 kJ mol(-1) in good accord with the DF-DFT-SAPT and DFT-D calculations. The relevance of the results obtained with the coronene model for the description of the physisorption on graphite surface was also studied.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1463-9076
1463-9084
DOI:10.1039/c001155j