Learning Robust Shape Regularization for Generalizable Medical Image Segmentation

Generalizable medical image segmentation enables models to generalize to unseen target domains under domain shift issues. Recent progress demonstrates that the shape of the segmentation objective, with its high consistency and robustness across domains, can serve as a reliable regularization to aid...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 43; no. 7; pp. 2693 - 2706
Main Authors Chen, Kecheng, Qin, Tiexin, Lee, Victor Ho-Fun, Yan, Hong, Li, Haoliang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Generalizable medical image segmentation enables models to generalize to unseen target domains under domain shift issues. Recent progress demonstrates that the shape of the segmentation objective, with its high consistency and robustness across domains, can serve as a reliable regularization to aid the model for better cross-domain performance, where existing methods typically seek a shared framework to render segmentation maps and shape prior concurrently. However, due to the inherent texture and style preference of modern deep neural networks, the edge or silhouette of the extracted shape will inevitably be undermined by those domain-specific texture and style interferences of medical images under domain shifts. To address this limitation, we devise a novel framework with a separation between the shape regularization and the segmentation map. Specifically, we first customize a novel whitening transform-based probabilistic shape regularization extractor namely WT-PSE to suppress undesirable domain-specific texture and style interferences, leading to more robust and high-quality shape representations. Second, we deliver a Wasserstein distance-guided knowledge distillation scheme to help the WT-PSE to achieve more flexible shape extraction during the inference phase. Finally, by incorporating domain knowledge of medical images, we propose a novel instance-domain whitening transform method to facilitate a more stable training process with improved performance. Experiments demonstrate the performance of our proposed method on both multi-domain and single-domain generalization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2024.3371987