Flammability Characterization and Effects of Magnesium Oxide in Halogen-free Flame-retardant EVA Blends

The effects of magnesium oxide (MgO) on the flame retardant performance of intumescent systems based on ammonium polyphosphate (APP) and pentaerythritol (PER) in ethylene vinyl acetate copolymer (EVA) were studied. The results showed that MgO affects both the quality and quantity of residual char. T...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of polymer science Vol. 33; no. 12; pp. 1683 - 1690
Main Authors Zhang, Yan, Peng, Rui-qun, Zhou, Guang-da, Fang, Zheng-ping, Li, Xiao-nan
Format Journal Article
LanguageEnglish
Published Beijing Chinese Chemical Society and Institute of Chemistry, CAS 01.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effects of magnesium oxide (MgO) on the flame retardant performance of intumescent systems based on ammonium polyphosphate (APP) and pentaerythritol (PER) in ethylene vinyl acetate copolymer (EVA) were studied. The results showed that MgO affects both the quality and quantity of residual char. There is an optimal value for the loading amount of MgO. More or less MgO loading may cause the formation of defective char layers and worsen the flame retardancy of EVA. According to the results of limiting oxygen index (LOI), vertical flammability test (UL94 rating) and cone calorimetry (CONE), the best flame retardancy with a strong and well intumescent char is obtained from the sample with 1 wt% of MgO, which has the highest LOI value of 27.9, UL94 rating of V-0 and the lowest peak heat release rate of 242 kW·m-2.
Bibliography:The effects of magnesium oxide (MgO) on the flame retardant performance of intumescent systems based on ammonium polyphosphate (APP) and pentaerythritol (PER) in ethylene vinyl acetate copolymer (EVA) were studied. The results showed that MgO affects both the quality and quantity of residual char. There is an optimal value for the loading amount of MgO. More or less MgO loading may cause the formation of defective char layers and worsen the flame retardancy of EVA. According to the results of limiting oxygen index (LOI), vertical flammability test (UL94 rating) and cone calorimetry (CONE), the best flame retardancy with a strong and well intumescent char is obtained from the sample with 1 wt% of MgO, which has the highest LOI value of 27.9, UL94 rating of V-0 and the lowest peak heat release rate of 242 kW·m-2.
Flammability; Magnesium oxide; Flame retardancy; Ethylene vinyl acetate copolymer; Intumescence.
11-2015/O6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0256-7679
1439-6203
DOI:10.1007/s10118-015-1722-z